Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\left(3x-5\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\3x-5=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=\frac{5}{3}\end{cases}}}\)
Vậy \(x\in\left\{0;\frac{5}{3}\right\}\)
a) \(x\left(3x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\3x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{5}{3}\end{cases}}}\)
b) \(3x^2-27=0\)
\(\Leftrightarrow3x^2=27\)
\(\Leftrightarrow x^2=9\)
\(\Leftrightarrow x=\pm3\)
c) \(\left(x-5\right)^2=x-5\)
\(\Leftrightarrow x^2-10x+25-x+5=0\)
\(\Leftrightarrow x^2-11x+30=0\)
\(\Leftrightarrow\left(x-6\right)\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=6\\x=5\end{cases}}}\)
d) \(2\left(x+7\right)-x^2-7x=0\)
\(\Leftrightarrow2x+14-x^2-7x=0\)
\(\Leftrightarrow-x^2-5x+14=0\)
\(\Leftrightarrow\left(x-7\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-7=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=2\end{cases}}}\)
e)\(7x\left(x-3\right)+2.3x=0\)
\(\Leftrightarrow7x^2-21x+6x=0\)
\(\Leftrightarrow7x^2-15x=0\)
\(\Leftrightarrow x\left(7x-15\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\7x-15=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{15}{7}\end{cases}}}\)
#H
(3x+2).(x+1)=3x.(5+x)
\(\Rightarrow\)\(3x^2+3x+2x+2=15x+3x^2\)
\(\Rightarrow3x^2+5x+2=15x+3x^2\)
\(\Rightarrow5x-15x+2=3x^2-3x^2\)
\(\Rightarrow-10x+2=0\)
\(-10x=-2\)
\(x=\frac{1}{5}\)
a) x2 - 4x - 5 = 0
=> x2 - 5x + x - 5 = 0
=> x(x - 5) + (x - 5) = 0
=> (x + 1)(x - 5) = 0
=> \(\orbr{\begin{cases}x+1=0\\x-5=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-1\\x=5\end{cases}}\)
b) 4x2 + 7x - 11 = 0
=> 4x2 + 11x - 4x - 11 = 0
=> x(4x + 11) - (4x + 11) = 0
=> (x - 1)(4x + 11) = 0
=> \(\orbr{\begin{cases}x-1=0\\4x+11=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=1\\x=-\frac{11}{4}\end{cases}}\)
c) -7x2 + 6x + 1 = 0
=> -7x2 + 7x - x + 1 = 0
=> -7x(x - 1) - (x - 1) = 0
=> (-7x - 1)(x - 1) = 0
=> \(\orbr{\begin{cases}-7x-1=0\\x-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}-7x=1\\x=1\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{1}{7}\\x=1\end{cases}}\)
d) -10x2 + 7x + 3 = 0
=> -10x2 + 10x - 3x + 3 = 0
=> -10x(x - 1) - 3(x - 1) = 0
=> (-10x - 3)(x - 1) = 0
=> \(\orbr{\begin{cases}-10x-3=0\\x-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}-10x=3\\x=1\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{3}{10}\\x=1\end{cases}}\)
x2 + 7x + \(\frac{49}{4}\) - \(\frac{23}{4}\) = 0
<=> x2 + 7x + \(\frac{49}{4}\) = \(\frac{23}{4}\)
<=> (x + \(\frac{7}{2}\))2 = \(\frac{23}{4}\)
Tự gải tiếp
\(x^2+7x+5=0\)
\(x^2+2.x.\frac{7}{2}+\left(\frac{7}{2}\right)^2-\frac{29}{4}=0\)
\(\left(x+\frac{7}{2}\right)^2-\left(\frac{\sqrt{29}}{2}\right)^2=0\)
\(\left(x+\frac{7}{2}-\frac{\sqrt{29}}{2}\right)\left(x+\frac{7}{2}+\frac{\sqrt{29}}{2}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{7}{2}-\frac{\sqrt{29}}{2}=0\\x+\frac{7}{2}+\frac{\sqrt{29}}{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{29}-7}{2}\\x=-\frac{\sqrt{29}+7}{2}\end{cases}}}\)
Vậy \(\Rightarrow\orbr{\orbr{\begin{cases}x=\frac{\sqrt{29}-7}{2}\\x=-\frac{\sqrt{29}+7}{2}\end{cases}}}\)
a) \(7x^2-16x=2x^3-56\)
\(\Leftrightarrow\)\(2x^3-7x^2+16x-56=0\)
\(\Leftrightarrow\)\(2x\left(x^2+8\right)-7\left(x^2+8\right)=0\)
\(\Leftrightarrow\)\(\left(2x-7\right)\left(x^2+8\right)=0\)
\(\Leftrightarrow\)\(2x-7=0\)
\(\Leftrightarrow\)\(x=3,5\)
Vậy...
b) \(x^7+x^3+2x^5+2x=0\)
\(\Leftrightarrow\)\(x.\left(x^6+x^2+2x^4+2\right)=0\)
\(\Leftrightarrow\)\(x\left(x^2+2\right)\left(x^4+1\right)=0\)
\(\Leftrightarrow\)\(x=0\)
Vậy...
c) \(\left(2x+1\right)x-5\left(x+\frac{1}{2}\right)=0\)
\(\Leftrightarrow\)\(2x\left(x+\frac{1}{2}\right)-5\left(x+\frac{1}{2}\right)=0\)
\(\Leftrightarrow\)\(\left(2x-5\right)\left(x+\frac{1}{2}\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-5=0\\x+\frac{1}{2}=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=2,5\\x=-0,5\end{cases}}\)
Vậy...
\(2x^2-7x+5=0\)
\(2x^2-2x-5x+5=0\)
\(2x\left(x-1\right)-5\left(x-1\right)=0\)
\(\left(x-1\right)\left(2x-5\right)=0\)
\(\left[\begin{array}{nghiempt}x-1=0\\2x-5=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=1\\2x=5\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=1\\x=\frac{5}{2}\end{array}\right.\)
\(x\left(2x-5\right)-4x+10=0\)
\(x\left(2x-5\right)-2\left(2x-5\right)=0\)
\(\left(2x-5\right)\left(x-2\right)=0\)
\(\left[\begin{array}{nghiempt}x-2=0\\2x-5=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=2\\2x=5\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=2\\x=\frac{5}{2}\end{array}\right.\)
\(\left(x-5\right)\left(x+5\right)-x\left(x-2\right)=15\)
\(x^2-25-x^2+2x=15\)
\(2x=15+25\)
\(2x=40\)
\(x=\frac{40}{2}\)
\(x=20\)
\(x^2\left(2x-3\right)-12+8x=0\)
\(x^2\left(2x-3\right)+4\left(2x-3\right)=0\)
\(\left(2x-3\right)\left(x^2+4\right)=0\)
\(2x-3=0\) (vì \(x^2\ge0\Rightarrow x^2+4\ge4>0\))
\(2x=3\)
\(x=\frac{3}{2}\)
\(x\left(x-1\right)+5x-5=0\)
\(x\left(x-1\right)+5\left(x-1\right)=0\)
\(\left(x-1\right)\left(x+5\right)=0\)
\(\left[\begin{array}{nghiempt}x-1=0\\x+5=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=1\\x=-5\end{array}\right.\)
\(\left(2x-3\right)^2-4x\left(x-1\right)=5\)
\(4x^2-12x+9-4x^2+4x=5\)
\(-8x=5-9\)
\(-8x=-4\)
\(x=\frac{4}{8}\)
\(x=\frac{1}{2}\)
\(x\left(5-2x\right)+2x\left(x-1\right)=13\)
\(5x-2x^2+2x^2-2x=13\)
\(3x=13\)
\(x=\frac{13}{3}\)
\(2\left(x+5\right)\left(2x-5\right)+\left(x-1\right)\left(5-2x\right)=0\)
\(\left(2x+10\right)\left(2x-5\right)-\left(x-1\right)\left(2x-5\right)=0\)
\(\left(2x-5\right)\left(2x+10-x+1\right)=0\)
\(\left(2x-5\right)\left(x+11\right)=0\)
\(\left[\begin{array}{nghiempt}2x-5=0\\x+11=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}2x=5\\x=-11\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-11\end{array}\right.\)
hỏi ít thôi
b) = 6(x+5) +x(x+5) = 0
(x+5)(6+x) = 0
x = -5
x = -6
Bài 5 :
f, bạn xem lại đề hay là tìm x chứa tham số a ?
g, \(x^2+3x-\left(2x+6\right)=0\Leftrightarrow x\left(x+3\right)-2\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\Leftrightarrow x=-3;x=2\)
h, \(5x+20-x^2-4x=0\Leftrightarrow5\left(x+4\right)-x\left(x+4\right)=0\)
\(\Leftrightarrow\left(5-x\right)\left(x+4\right)=0\Leftrightarrow x=-4;x=5\)
m, \(x^3-5x^2-x+5=0\Leftrightarrow x^2\left(x-5\right)-\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-5\right)=0\Leftrightarrow x=\pm1;x=5\)
n, \(x\left(x-3\right)-7x+21=0\Leftrightarrow x\left(x-3\right)-7\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-7\right)\left(x-3\right)=0\Leftrightarrow x=3;x=7\)
a. x(x-5)-4x+20=0
\(\Leftrightarrow\)x(x-5)-4(x-5)=0
\(\Leftrightarrow\)(x-4)(x-5)=0
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=5\end{cases}}}\)
b, x(x+6)-7x-42=0
\(\Leftrightarrow x\left(x+6\right)-7\left(x+6\right)=0\\ \Leftrightarrow\left(x-7\right)\left(x+6\right)=0\\ \Leftrightarrow\orbr{\begin{cases}x-7=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=-6\end{cases}}}\)
3, x^3-5x^2+x-5=0
\(\Leftrightarrow x^2\left(x-5\right)+\left(x-5\right)=0\\ \Leftrightarrow\left(x^2+1\right)\left(x-5\right)=0\\ \Leftrightarrow\orbr{\begin{cases}x^2+1=0\\x-5=0\end{cases}}\)
\(\Leftrightarrow x-5=0\\ \Leftrightarrow x=5\)
\(\Leftrightarrow\left(7x+1\right)\left(x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{7}\\x=5\end{cases}}\)
ta có : 7x(x-5)-(5-x) = 0
=> 7x(x-5)+(x-5) = 0
=>7x(x^2-25)=0
=>x=-5
=>x=5