Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(4\left(2-x\right)+x\left(x+6\right)=x^2\)
\(\Leftrightarrow8-4x+x^2+6x-x^2=0\)
\(\Leftrightarrow2x=-8\)
hay x=-4
b: Ta có: \(x\left(x-7\right)-\left(x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow x^2-7x-x^2-3x+10=0\)
\(\Leftrightarrow-10x=-10\)
hay x=1
c: Ta có: \(\left(2x+3\right)\left(3-2x\right)+\left(2x-1\right)^2=2\)
\(\Leftrightarrow9-4x^2+4x^2-4x+1=2\)
\(\Leftrightarrow-4x=-8\)
hay x=2
a: Ta có: \(x\left(2-x\right)+x^2+x=7\)
\(\Leftrightarrow2x-x^2+x^2+x=7\)
\(\Leftrightarrow3x=7\)
hay \(x=\dfrac{7}{3}\)
b: Ta có: \(\left(x-4\right)^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left(x-4-2x-1\right)\left(x-4+2x+1\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(3x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=1\end{matrix}\right.\)
a: \(\Leftrightarrow\left(x+2\right)\left(12-x\right)=0\)
\(\Leftrightarrow x\in\left\{-2;12\right\}\)
b: \(\Leftrightarrow\left(2x+5\right)\left(x-1\right)=0\)
\(\Leftrightarrow x\in\left\{-\dfrac{5}{2};1\right\}\)
e: ta có: \(4x^2+4x-6=2\)
\(\Leftrightarrow4x^2+4x-8=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)
f: Ta có: \(2x^2+7x+3=0\)
\(\Leftrightarrow\left(x+3\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-\dfrac{1}{2}\end{matrix}\right.\)
a) Ta có: \(\left(2x-1\right)\left(x^2-x+1\right)=2x^3-3x^2+2\)
\(\Leftrightarrow2x^3-2x^2+2x-x^2+x-1-2x^3+3x^2-2=0\)
\(\Leftrightarrow3x=3\)
hay x=1
Vậy: S={1}
b) Ta có: \(\left(x+1\right)\left(x^2+2x+4\right)-x^3-3x^2+16=0\)
\(\Leftrightarrow x^3+2x^2+4x+x^2+2x+4-x^3-3x^2+16=0\)
\(\Leftrightarrow6x=-20\)
hay \(x=-\dfrac{10}{3}\)
c) Ta có: \(\left(x+1\right)\cdot\left(x+2\right)\left(x+5\right)-x^3-8x^2=27\)
\(\Leftrightarrow\left(x^2+3x+2\right)\left(x+5\right)-x^3-8x^2-27=0\)
\(\Leftrightarrow x^3+5x^2+3x^2+15x+2x+10-x^3-8x^2-27=0\)
\(\Leftrightarrow17x=17\)
hay x=1
a: Ta có: \(\left(2x-3\right)^2+6\left(2x-1\right)=7\)
\(\Leftrightarrow\left(2x-3\right)^2+6\left(2x-1\right)-7=0\)
\(\Leftrightarrow4x^2-12x+9+12x-6-7=0\)
\(\Leftrightarrow4x^2=4\)
\(\Leftrightarrow x^2=1\)
hay \(x\in\left\{1;-1\right\}\)
b: Ta có: \(x^2-7x+10=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)
a) \(\left(2x-3\right)^2+6\left(2x-1\right)=7\\ \Rightarrow4x^2-12x+9+12x-6-7=0\\ \Rightarrow4x^2-4=0\\ \Rightarrow x^2-1=0\\ \Rightarrow x^2=1\\ \Rightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
b) \(x^2-7x+10=0\\ \Rightarrow\left(x^2-2x\right)-\left(5x-10\right)=0\\ \Rightarrow\left(x-2\right)\left(x-5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-2=0\\x-5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)
c) \(-6x^2+13x-5=0\\ \Rightarrow-\left(6x^2-13x+5\right)=0\\ \Rightarrow-\left[\left(6x^2-10x\right)-\left(3x-5\right)\right]=0\\ \Rightarrow-\left[2x\left(3x-5\right)-\left(3x-5\right)\right]=0\\ \Rightarrow-\left(2x-1\right)\left(3x-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-\left(2x-1\right)=0\\3x-5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}2x-1=0\\3x-5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{5}{3}\end{matrix}\right.\)
a: \(\Leftrightarrow2x^3-56-7x^2+16x=0\)
\(\Leftrightarrow2x\left(x^2+8\right)-7\left(x^2+8\right)=0\)
=>2x-7=0
hay x=7/2
b: \(\Leftrightarrow x^5\left(x^2+2\right)+x\left(x^2+2\right)=0\)
=>x(x2+2)(x4+1)=0
=>x=0
c: \(\Leftrightarrow2x^2+x-5x-\dfrac{5}{2}=0\)
\(\Leftrightarrow2x^2-4x-\dfrac{5}{2}=0\)
hay \(x\in\left\{\dfrac{5}{2};-\dfrac{1}{2}\right\}\)
a) \(6x^2-72x=0\)
\(6x\left(x-12\right)=0\)
\(6x=0\) hoặc \(x-72=0\)
*) \(6x=0\)
\(x=0\)
*) \(x-12=0\)
\(x=12\)
Vậy \(x=0;x=12\)
b) \(-2x^4+16x=0\)
\(-2x\left(x^3-8\right)=0\)
\(-2x=0\) hoặc \(x^3-8=0\)
*) \(-2x=0\)
\(x=0\)
*) \(x^3-8=0\)
\(x^3=8\)
\(x=2\)
Vậy \(x=0;x=2\)
c) \(x\left(x-5\right)-\left(x-3\right)^2=0\)
\(x^2-5x-x^2+6x-9=0\)
\(x-9=0\)
\(x=9\)
d) \(\left(x-2\right)^3-\left(x-2\right)\left(x^2+2x+4\right)=0\)
\(x^3-6x^2+12x-8-x^3+8=0\)
\(-6x^2+12x=0\)
\(-6x\left(x-2\right)=0\)
\(-6x=0\) hoặc \(x-2=0\)
*) \(-6x=0\)
\(x=0\)
*) \(x-2=0\)
\(x=2\)
Vậy \(x=0;x=2\)
a) \(7x^2-16x=2x^3-56\)
\(\Leftrightarrow\)\(2x^3-7x^2+16x-56=0\)
\(\Leftrightarrow\)\(2x\left(x^2+8\right)-7\left(x^2+8\right)=0\)
\(\Leftrightarrow\)\(\left(2x-7\right)\left(x^2+8\right)=0\)
\(\Leftrightarrow\)\(2x-7=0\)
\(\Leftrightarrow\)\(x=3,5\)
Vậy...
b) \(x^7+x^3+2x^5+2x=0\)
\(\Leftrightarrow\)\(x.\left(x^6+x^2+2x^4+2\right)=0\)
\(\Leftrightarrow\)\(x\left(x^2+2\right)\left(x^4+1\right)=0\)
\(\Leftrightarrow\)\(x=0\)
Vậy...
c) \(\left(2x+1\right)x-5\left(x+\frac{1}{2}\right)=0\)
\(\Leftrightarrow\)\(2x\left(x+\frac{1}{2}\right)-5\left(x+\frac{1}{2}\right)=0\)
\(\Leftrightarrow\)\(\left(2x-5\right)\left(x+\frac{1}{2}\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-5=0\\x+\frac{1}{2}=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=2,5\\x=-0,5\end{cases}}\)
Vậy...