Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,2^x+2^{x+1}=96\)
\(\Rightarrow2^x+2^x.2=96\) \(\Rightarrow2^x\left(1+2\right)=96\)
\(\Rightarrow2^x.3=96\) \(\Rightarrow2^x=32\)
\(\Rightarrow2^x=2^5\Rightarrow x=5\)
\(b,3^{4x+4}=81^{x+3}\)
\(\Rightarrow3^{4x+4}=3^{4x+12}\)
\(\Rightarrow4x+4=4x+12\) (Vô lý)
Vậy \(x\in\varnothing\)
a/ \(2^x+2^{x+1}=96\)
\(2^x+2^x.2=96\)
\(2^x\cdot\left(2+1\right)=96\)
\(2^x=\frac{96}{3}=32\)
\(2^x=2^5\)
\(=>x=5\)
b/ \(3^{4x+4}=81^{x+3}\)
\(\Rightarrow3^{4x+4}-81^{x+3}=0\)
\(3^{4x}.3^4-3^{4x}\cdot81^3=0\)
\(3^{4x}\cdot\left(81-81^3\right)=0\)
\(3^{4x}=\frac{0}{81-81^3}\)
\(3^{4x}=0\Rightarrow x=0\)
a/ \(\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)^2=0^2\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy ..
b/ \(x\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
Vậy ..
c/ \(x^2+4x=0\)
\(\Leftrightarrow x\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
Vậy ..
d/ \(\left(2x+3\right)^2=49\)
\(\Leftrightarrow\left(2x+3\right)^2=7^2=\left(-7\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=7\\2x+3=-7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
Vậy ..
a. (x-1)2 = 0
=> x-1=0 => x=1
b. x(x-5) = 0
=> \(\left[{}\begin{matrix}x=0\\x-5=0\end{matrix}\right.\)=> \(\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
c. x2 + 4x = 0
x(x+4) = 0
=>\(\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
d. (2x+3)2 = 49
(2x+3)2 = \(\left(\pm7\right)^2\)
=>\(\left[{}\begin{matrix}2x+3=7\\2x+3=-7\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
1) \(-x-3=-2\left(x+7\right)\\ \Rightarrow-x-3=-2x-14\\ \Rightarrow-x+2x=-14+3\\ \Rightarrow x=-11\)
2) \(A=\frac{12}{\left(x+1\right)^2+3}\\ Tac\text{ó}:\left(x+1\right)^2\ge0\\ \Rightarrow\left(x+1\right)^2+3\ge3\\ \Rightarrow A\le\frac{12}{3}=4\)
Max A=4 khi x=-1
3) Đăt : \(n^2+4=k^2\\ \Rightarrow k^2-n^2=4\\ \Rightarrow\left(k-n\right)\left(k+n\right)=4\)
lập bang ra rồi tính
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
Ta có (x - 2)2 ≥ 0
⇒ (x - 2)2 - 3 ≥ -3
Dấu "=" xảy ra
⇔ (x - 2)2 = 0
⇔ x - 2 = 0
⇔ x = 2
Vậy, MIN (x - 2)2 - 3 = -3 ⇔ x = 2
a: \(\Leftrightarrow5x-42=251\)
=>5x=293
hay x=293/5
b: \(\Leftrightarrow20-x=20\)
hay x=0
c: \(\Leftrightarrow x-4300-\dfrac{1}{50}=4250\)
\(\Leftrightarrow x=\dfrac{427501}{50}\)
d: =>(x+200):4=460-340=120
=>x+200=480
hay x=280
e: =>5+15(x+1)=500-480=20
=>15(x+1)=15
=>x+1=1
hay x=0
a ) \(x^2-5=11\)
\(\Leftrightarrow x^2=11+5\)
\(\Leftrightarrow x^2=16\)
\(\Leftrightarrow x=\pm\sqrt{16}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=4\\x=-4\end{array}\right.\)
Vậy \(x\in\left\{4;-4\right\}\)
b ) \(4x^3+15=19\)
\(\Leftrightarrow4x^3=19-15\)
\(\Leftrightarrow4x^3=4\)
\(\Leftrightarrow x^3=4:4\)
\(\Leftrightarrow x^3=1\)
\(\Leftrightarrow x=1\)
Vậy \(x=1\)
a) (x - 3)¹⁰ + (y² - 4)¹⁰ = 0 (1)
Do (x - 3)¹⁰ 0 và (y² - 4)¹⁰ 0 với mọi x, y R
(1) (x - 3)¹⁰ = 0 và (y² - 4)¹⁰ = 0
*) (x - 3)¹⁰ = 0
x - 3 = 0
x = 3
*) (y² - 4)¹⁰ = 0
y² - 4 = 0
y² = 4
y = -2; y = 2
Vậy ta được các cặp (x: y) thỏa mãn:
(3; -2); (3; 2)
b) xy + 5x = 2y + 13
xy + 5x - 2y = 13
(xy + 5x) - 2y = 13
x(y + 5) - 2y - 10 = 13 - 10
x(y + 5) - 2(y + 5) = 3
(x - 2)(y + 5) = 3
*) TH1: x - 2 = -3; y + 5 = -1
+) x - 2 = -3
x = -3 + 2
x = - 1
+) y + 5 = -1
y = -1 - 5
y = -6
*) TH2: x - 2 = -1; y + 5 = -3
+) x - 2 = -1
x = -1 + 2
x = 1
+) y + 5 = -3
y = -3 - 5
y = -8
*) TH3: x - 2 = 1; y + 5 = 3
+) x - 2 = 1
x = 1 + 2
x = 3
+) y + 5 = 3
y = 3 - 5
y = -2
*) TH4: x - 2 = 3; y + 5 = 1
+) x - 2 = 3
x = 3 + 2
x = 5
+) y + 5 = 1
y = 1 - 5
y = -4
Vậy ta tìm được câc cặp giá trị (x; y) thỏa mãn:
(5; -4); (3; -2); (1; -8); (-1; -6)
B=x+4/x2+2
B=x+22/2+x2
ta có:22=x2
=>x=2