Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}x\left(x+y+z\right)=13\\y\left(x+y+z\right)=7\\z\left(x+y+z\right)=-4\end{matrix}\right.\) \(\Leftrightarrow x\left(x+y+z\right)+y\left(x+y+z\right)+z\left(x+y+z\right)=13+7-4\)
\(\Rightarrow\left(x+y+z\right)\left(x+y+z\right)=16\)
\(\Rightarrow\left(x+y+z\right)^2=16\)
\(\Rightarrow\left[{}\begin{matrix}x+y+z=4\\x+y+z=-4\end{matrix}\right.\)
Với \(x+y+z=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{13}{4}\\y=\dfrac{7}{4}\\z=-1\end{matrix}\right.\)
Với \(x+y+z=-4\)
\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{13}{4}\\y=-\dfrac{7}{4}\\z=1\end{matrix}\right.\)
a: \(\Leftrightarrow x\cdot\dfrac{1}{4}=\dfrac{1}{2}+\dfrac{1}{9}=\dfrac{11}{18}\)
hay \(x=\dfrac{11}{18}:\dfrac{1}{4}=\dfrac{11}{18}\cdot4=\dfrac{44}{18}=\dfrac{22}{9}\)
d: =>x+1;x-2 khác dấu
Trường hợp 1: \(\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\Leftrightarrow-1< x< 2\)
Trường hợp 2: \(\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\Leftrightarrow2< x< -1\left(loại\right)\)
e: =>x-2>0 hoặc x+2/3<0
=>x>2 hoặc x<-2/3
Tìm \(x,y,z\in Q\). Biết
\(x\left(x+y+z=-5\right)\)
\(y\left(x+y+z\right)=9\)
\(z\left(x+y+z\right)=5\)
x(x+y+z)=-5 (1)
y(x+y+z)=9 (2)
z(x+y+z)=5 (3)
Lấy (1)+(2)+(3) ta được
x(x+y+z)+y(x+y+z)+z(x+y+z)=(-5)+9+5
=>(x+y+z)(x+y+z)=9 ( Áp dụng tính chất phân phối)
=>x+y+z=3 hoặc x+y+z=-3
Vậy các số x,y,z thỏa mãn là các x,y,z có tổng bằng 3 hoặc -3
TH1 x+y+z=3
=>x=(-5)/3
y=9:3=3
z=5/3
TH2
x+y+z=-3
=>x=(-5) / (-3) =5/3
y=9:(-3)=(-3)
z=5:(-3)=-5/3
hình như mk thấy có phần tương tự trong sbt oán 7 ở phần nào đó thì phải . Bạn về nhà tìm thử xem sau đó mở đáp án ở sau mà coi
Lí luận chung cho cả 3 câu :
Vì GTTĐ luôn lớn hơn hoặc bằng 0
a) \(\Rightarrow\hept{\begin{cases}x+\frac{3}{7}=0\\y-\frac{4}{9}=0\\z+\frac{5}{11}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{-3}{7}\\y=\frac{4}{9}\\z=\frac{-5}{11}\end{cases}}}\)
b)\(\Rightarrow\hept{\begin{cases}x-\frac{2}{5}=0\\x+y-\frac{1}{2}=0\\y-z+\frac{3}{5}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{1}{10}\\z=\frac{7}{10}\end{cases}}}\)
c)\(\Rightarrow\hept{\begin{cases}x+y-2,8=0\\y+z+4=0\\z+x-1,4=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=2,8\\y+z=-4\\z+x=1,4\end{cases}}}\)
\(\Rightarrow x+y+y+z+z+x=2,8-4+1,4\)
\(\Rightarrow2\left(x+y+z\right)=0,2\)
\(\Rightarrow x+y+z=0,1\)
Từ đây tìm đc x, y, z
\(\Rightarrow\sqrt{y\left(2x-y\right)}.\sqrt{z\left(2y-z\right)}.\sqrt{x\left(2z-x\right)}=xyz\)
\(\Rightarrow\sqrt{xyz}.\sqrt{\left(2x-y\right)\left(2y-z\right)\left(2z-x\right)}=xyz\)
\(\Rightarrow\sqrt{\left(2x-y\right)\left(2y-z\right)\left(2z-x\right)}=\sqrt{xyz}\)
=>(2x-y)(2y-z)(2z-x)=xyz
=>(2x-y)2(2y-z)2(2z-x)2=x2y2z2
=>8(2x-y)2(2y-z)2(2z-x)2=8x2y2z2
(3-x2)(3-y2)(3-z2)
=3x2y2+3y2z2+3z2x2-x2y2z2
sau đó phân tích cái 8(2x-y)2(2y-z)2(2z-x)2
\(\Rightarrow\sqrt{y\left(2x-y\right)}.\sqrt{z\left(2y-z\right)}.\sqrt{x\left(2z-x\right)}=xyz\)
\(\Rightarrow\sqrt{xyz}.\sqrt{\left(2x-y\right)\left(2y-z\right)\left(2z-x\right)}=xyz\)
\(\Rightarrow\sqrt{\left(2x-y\right)\left(2y-z\right)\left(2z-x\right)}=\sqrt{xyz}\)
=>(2x-y)(2y-z)(2z-x)=xyz
=>(2x-y)2(2y-z)2(2z-x)2=x2y2z2
=>8(2x-y)2(2y-z)2(2z-x)2=8x2y2z2
(3-x2)(3-y2)(3-z2)
=3x2y2+3y2z2+3z2x2-x2y2z2
sau đó phân tích cái 8(2x-y)2(2y-z)2(2z-x)2
\(x\left(x+y+z\right)=-5\left(1\right);y\left(x+y+z\right)=9\left(2\right);z\left(x+y+z\right)=5\left(3\right)\)
Cộng vế với vế của (1);(2);(3) với nhau ta được (x+y+z)2=9 =>x+y+z=-3 hoặc x+y+z=3
TH1: x+y+z=-3
Thay x+y+z=-3 vào (1);(2) ta được x.(-3)=-5 => x=5/3; y.(-3)=9 => y=-3
x+y+z=(5/3)+(-3)+z=-3 => (5/3)+z=0 => z=-5/3
TH2: x+y+z=3
Thay x+y+z=3 vào (1);(2) ta được x.3=-5 => x=-5/3; y.3=9 => y=3
x+y+z=(-5/3)+3+z=3 => (-5/3)+z=0 => z=5/3
Vậy x=5/3;y=-3;z=-5/3 hoặc x=-5/3;y=3;z=-5/3
Theo đề ra ta có:
\(\frac{-5}{x}=\frac{9}{y}=\frac{5}{z}=x+y+z=\frac{9}{x+y+z}\)(áp dụng tính chất của dãy tỉ số bằng nhau)
\(\rightarrow\left(x+y+z\right)^2=9\rightarrow\orbr{\begin{cases}x+y+z=3\\x+y+z=-3\end{cases}}\)
\(\rightarrow\orbr{\begin{cases}x=\frac{-5}{3}\\x=\frac{5}{3}\end{cases},}\orbr{\begin{cases}y=3\\y=-3\end{cases},}\orbr{\begin{cases}z=\frac{5}{3}\\z=\frac{-5}{3}\end{cases}}\)
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}\) = \(\frac{x+y+z}{x+y+z}=1\)
=> \(x=y=z\)
\(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\left(1+\frac{x}{x}\right)=\left(1+\frac{y}{y}\right)=\left(1+\frac{z}{z}\right)\)\(=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2\cdot2\cdot2=8\)