Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{3}\\ \Rightarrow\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{3}{4}}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{3}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{3}{4}}=\dfrac{49}{\dfrac{43}{12}}=\dfrac{588}{43}\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{882}{43}\\y=\dfrac{784}{43}\\z=\dfrac{441}{43}\end{matrix}\right.\)
Ta có: \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{3}\)
⇔ \(\dfrac{12x}{18}=\dfrac{12y}{16}=\dfrac{12z}{9} \)
Áp dụng t/c dtsbn, ta có:
\(\dfrac{12x}{18}=\dfrac{12y}{16}=\dfrac{12z}{9}=\dfrac{12(x+y+z)}{18+16+9}=\dfrac{12.49}{43}=\dfrac{588}{43}\)
⇒ \(\left\{{}\begin{matrix}x=\dfrac{882}{43}\\y=\dfrac{784}{43}\\z=\dfrac{441}{43}\end{matrix}\right.\)
Bài giải
a, Ta có :
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{50-8}{9}=\frac{45}{9}=5\)
( Áp dụng tính chất của dãy tỉ số bằng nhau )
\(\Rightarrow\hept{\begin{cases}x=5\cdot2+1=11\\y=5\cdot3+2=17\\z=5\cdot4+3=23\end{cases}}\)
b, Ta có :
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=49\cdot\frac{12}{49}=12\)
( Áp dụng tính chất của dãy tỉ số bằng nhau )
\(\Rightarrow\text{ }\hept{\begin{cases}x=12\cdot3\text{ : }2=18\\y=12\cdot4\text{ : }3=16\\z=12\cdot5\text{ : }4=15\end{cases}}\)
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=\frac{z}{1,25}=\frac{2x-3y+z}{3-4+1,25}=\frac{49}{0,25}=196\Rightarrow\hept{\begin{cases}2x=196.3=588\\3y=196.4=784\\4z=196.5=980\end{cases}\Rightarrow\hept{\begin{cases}x=294\\y=261\frac{1}{3}\\z=245\end{cases}}31}\)
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}=\frac{12x+12y+12z}{18+16+15}=\frac{12\left(x+y+z\right)}{49}=\frac{12.49}{49}=12\)
suy ra :
\(\frac{2x}{3}=12\Rightarrow2x=36\Rightarrow x=18\)
\(\frac{3y}{4}=12\Rightarrow3y=48\Rightarrow y=16\)
\(\frac{4z}{5}=12\Rightarrow4z=60\Rightarrow z=15\)
a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
Khi đó: \(\hept{\begin{cases}\frac{5x}{50}=2\Rightarrow x=20\\\frac{y}{6}=2\Rightarrow y=12\\\frac{2z}{42}=2\Rightarrow z=42\end{cases}}\)
e) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{2x+3y-z-5}{9}=\frac{50-5}{9}=5\)
Khi đó: \(\hept{\begin{cases}\frac{2x-2}{4}=5\Rightarrow x=11\\\frac{3y-6}{9}=5\Rightarrow y=17\\\frac{z-3}{4}=5\Rightarrow z=23\end{cases}}\).