Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu trả lời hay nhất: từ giả thiết thứ nhất dặt x= 3t , y =5t , z = -2t
thay vào giả thiết thứ 2 ta có 15t - 5t - 6t = 124 <=> t =31
nên x= 93 , y= 155 , z= -62
thân mên
long
đặng hoàng long
Ta có : \(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}\)
\(\Rightarrow\frac{x\times y}{\frac{1}{3}\times\frac{1}{5}}=\frac{1500}{\frac{1}{15}}=22500\)
\(\Rightarrow\frac{x}{\frac{1}{3}}=22500\Rightarrow x=22500\times\frac{1}{3}=7500\)
\(\Rightarrow\frac{y}{\frac{1}{5}}=22500\Rightarrow y=22500\times\frac{1}{5}=4500\)
a) \(\left(x-1\right)\left(y+2\right)=5\)
Th1 : \(\hept{\begin{cases}x-1=-5\\y+2=-1\end{cases}\Rightarrow\hept{\begin{cases}x=-4\\y=-3\end{cases}}}\)
Th2 : \(\hept{\begin{cases}x-1=-1\\y+2=-5\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=-7\end{cases}}}\)
TH3 : \(\hept{\begin{cases}x-1=5\\y+2=1\end{cases}\Rightarrow\hept{\begin{cases}x=6\\y=-1\end{cases}}}\)
TH4 : \(\hept{\begin{cases}x-1=1\\y+2=5\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}}\)
Bài 1:
Ta có:
\(y-x=25\Rightarrow y=25+x\)
Mà \(7x=4y\Rightarrow7x=4\cdot\left(25+x\right)\)
\(7x=100+4x\)
\(\Rightarrow7x-4x=100\)
\(3x=100\)
\(x=\frac{100}{3}\)
bài 1 :
Ta có: 7x=4y ⇔ x/4=y/7
áp dụng tính chất dãy tỉ số bằng nhau ta có
x/4=y/7=(y-x)/(7-4)=100/3
⇒x= 4 x 100/3=400/3 ; y = 7 x 100/3=700/3
bài 2
ta có x/5 = y/6 ⇔ x/20=y/24
y/8 = z/7 ⇔ y/24=z/21
⇒x/20=y/24=z/21
ADTCDTSBN(bài 1 có)
x/20=y/24=z/21=(x+y)/(20+24)=69/48=23/16
⇒x= 20 x 23/16 = 115/4
y= 24x 23/16=138/2
z=21x23/16=483/16
Từ 2x=3y=4z \(\Rightarrow\)\(\frac{x}{6}\)=\(\frac{y}{4}\)=\(\frac{z}{3}\) áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\frac{x}{6}\) =\(\frac{y}{4}\)=\(\frac{z}{3}\)= \(\frac{y-x+z}{4-6+3}\)=\(\frac{2013}{1}\)= 2013
\(\Rightarrow\)x=2013.6=12078
\(\Rightarrow\)y= 2013.4=8052
\(\Rightarrow\)z=2013.3=6039
Vậy: x=12078
y=8052
z=6039
HOK TỐT!
@LOANPHAN.
Bài 1: \(x\).(\(x-y\)) = \(\dfrac{3}{10}\) và y(\(x-y\)) = - \(\dfrac{3}{50}\)
\(x\)(\(x\) - y) - y(\(x\) - y) = \(\dfrac{3}{10}\) - ( - \(\dfrac{3}{50}\))
(\(x-y\)).(\(x-y\)) = \(\dfrac{3}{10}\) + \(\dfrac{3}{50}\)
(\(x-y\))2 = \(\dfrac{15}{50}\) + \(\dfrac{3}{50}\)
(\(x\) - y)2 = \(\dfrac{9}{25}\) = (\(\dfrac{3}{5}\))2
\(\left[{}\begin{matrix}x-y=-\dfrac{3}{5}\\x-y=\dfrac{3}{5}\end{matrix}\right.\)
TH1 \(x-y=-\dfrac{3}{5}\) ⇒ \(\left\{{}\begin{matrix}x.\left(-\dfrac{3}{5}\right)=\dfrac{3}{10}\\y.\left(-\dfrac{3}{5}\right)=-\dfrac{3}{50}\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=\dfrac{3}{10}:\left(-\dfrac{3}{5}\right)=\dfrac{-1}{2}\\y=-\dfrac{3}{50}:\left(-\dfrac{3}{5}\right)=\dfrac{1}{10}\end{matrix}\right.\)
TH2: \(x-y=\dfrac{3}{5}\) ⇒ \(\left\{{}\begin{matrix}x.\dfrac{3}{5}=\dfrac{3}{10}\\y.\dfrac{3}{5}=-\dfrac{3}{50}\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=\dfrac{3}{10}:\dfrac{3}{5}=\dfrac{1}{2}\\y=-\dfrac{3}{50}:\dfrac{3}{5}=-\dfrac{1}{10}\end{matrix}\right.\)
Vậy (\(x;y\) ) = (- \(\dfrac{1}{2}\); \(\dfrac{1}{10}\)); (\(\dfrac{1}{2}\); - \(\dfrac{1}{10}\))
\(\frac{x}{3}=\frac{y}{9}\) và \(y-x=12\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{9}=\frac{y-x}{9-3}=\frac{12}{6}=2\)
Do đó:
\(\frac{x}{3}=2\Rightarrow x=3.2=6\)
\(\frac{y}{9}=2\Rightarrow y=9.2=18\)
Vậy \(x=6;y=18\)
\(\frac{x}{3}\)=\(\frac{y}{9}\) và x-y=12
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{3}\)=\(\frac{y}{9}\)=\(\frac{x-y}{3-9}\)=\(\frac{12}{-6}\)=\(\frac{-2}{1}\)
==>x=\(\frac{3.-2}{1}\)=-6
y=\(\frac{9.-2}{1}\)=-18
Hok tốt!