Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:(x-y)(x2+xy+y2)=667
Ta có 667=1.667=23.29
x-y 1 23 29 667
x2+xy+y2 667 29 23 1
x Không có Không có Không có Không có
y Không có Không có Không có Không có
Vậy không có x,y thỏa mãn
\(3\left(x^3-y^3\right)=2001\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y\right)=667\)
Ta có \(667=1\cdot667=23\cdot29\)
Vì x;y là số nguyên dương nên x-y; x2+xy+y2 nguyên mà x2+xy+y2>0 => x-y>0 => x>y
Ta có các trường hợp sau:
TH1: \(\hept{\begin{cases}x-y=23\\x^2+xy+y^2=29\end{cases}\Leftrightarrow\hept{\begin{cases}x-y=23\\\left(x-y\right)^2+3xy=29\end{cases}\Leftrightarrow}\hept{\begin{cases}x-y=23\\23^2+3xy=29\end{cases}\Leftrightarrow}\hept{\begin{cases}x-y=23\\xy=\frac{-500}{3}\end{cases}}}\)(loại)
TH2: \(\hept{\begin{cases}x-y=29\\x^2+xy+y^2=23\end{cases}\Leftrightarrow\hept{\begin{cases}x-y=29\\\left(x-y\right)^2+3xy=23\end{cases}}}\)(loại)
TH3: \(\hept{\begin{cases}x-y=667\\x^2+xy+y^2=1\end{cases}\Leftrightarrow\hept{\begin{cases}x-y=667\\\left(x-y\right)^2+3xy=1\end{cases}}}\)(loại)
TH4: \(\hept{\begin{cases}x-y=1\\x^2+xy+y^2=667\end{cases}\Leftrightarrow\hept{\begin{cases}x-y=1\\\left(x-y\right)^2+3xy=667\end{cases}\Leftrightarrow}\hept{\begin{cases}x-y=1\\xy=222\end{cases}\Leftrightarrow}\hept{\begin{cases}x=y+1\\xy=222\end{cases}}}\)
\(\Rightarrow y\left(y+1\right)=222\)\(\Leftrightarrow y=\frac{-1+\sqrt{889}}{2}\)(loại)
Vậy phương trình vô nghiệm
(x,y)=(0,19); (19,0)