Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
(x+2)2+(y-3)2+(z-2)2=0
\(\Rightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y-3\right)^2=0\\\left(z-2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2\\y=3\\z=2\end{cases}}}\)
Vậy...
b)
(x-3).y-x=5
xy - 3x - x = 5
xy - 4x = 5
x(y - 4) = 5 = 1.5 = (-1).(-5)
TH1:
\(\Rightarrow\hept{\begin{cases}x=1\\y-4=5\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=9\end{cases}}}\)
TH2:
\(\Rightarrow\hept{\begin{cases}x=5\\y-4=1\end{cases}\Rightarrow\hept{\begin{cases}x=5\\y=5\end{cases}}}\)
TH3:
\(\Rightarrow\hept{\begin{cases}x=-1\\y-4=-5\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=-1\end{cases}}}\)
TH4:
\(\Rightarrow\hept{\begin{cases}x=-5\\y-4=-1\end{cases}\Rightarrow\hept{\begin{cases}x=-5\\y=3\end{cases}}}\)
Vậy...
a)\(\frac{x+11}{x-6}=\frac{x-6+17}{x-6}=\frac{x-6}{x-6}+\frac{17}{x-6}\)
=>x-6\(\in\) Ư(17)
x-6 | 1 | -1 | 17 | -17 |
x | 7 | 5 | 23 | -11 |
Bạn tham khảo:
Giả sử:\(\hept{\begin{cases}xyz-x=1945\left(1\right)\\xyz-y=1975\left(2\right)\\xyz-z=1995\left(3\right)\end{cases}}\)với \(x,y,z\in N\)
Tứ \(\left(1\right)\Rightarrow x\left(yz-1\right)=1945\)là số lẻ \(\Rightarrow x\)lẻ
Từ \(\left(2\right)\Rightarrow y\left(xz-1\right)=1975\)là số lẻ \(\Rightarrow y\)lẻ
Từ \(\left(3\right)\Rightarrow z\left(xy-1\right)=1995\)là số lẻ \(\Rightarrow z\)lẻ
Nên \(x,y,z\)là số lẻ
\(\Rightarrow x,y,z-x\)là số chẵn khác 1945
Vậy không tồn tại \(x,y,z\in N\)thỏa mãn \(\left(1\right),\left(2\right),\left(3\right)\).
3n+1 chia hết cho 11-2n
=>6n+2 chia hết cho 11-2n
3(11-2n)=33-6n chia hết cho 11-2n
=>6n+2 +(33-6n) chia hết cho 11-2n
=> 35 chia hết cho 11-2n
=> 11-2n \(\in\)Ư(35)={1;-1;5;-5;7;-7;35;-35}
=>2n \(\in\){10;12;6;16;4;18;-24;46}
=>n \(\in\){5;6;3;8;2;9;23} (vì\(\in\)N)
Bài 1:
a) n+4 chia hết cho n-13
=> n-13+17 chia hết cho n-13
=> 17 chia hết cho n-13
=> n-13 \(\in\) Ư(17) = {1;-1;17;-17}
=> n \(\in\) {14;12;30;-4}
Vì n \(\in\) N nên n \(\in\) {14;20;30}
b) n-5 chia hết cho n-11
=> n-11+6 chia hết cho n-11
=> 6 chia hết cho n-11
=> n-11 \(\in\) Ư(6) = {1;-1;2;-2;3;-3;6;-6}
=> n \(\in\) {12;10;13;9;14;8;17;5}
Bài 2:
Để \(\overline{34x5}\) chia hết cho 9
=> 3+4+x+5 chia hết cho 9
=> 12+x chia hết cho 9
=> x = 7
Ta có: \(\frac{9}{x}=\frac{x}{4}\)
\(\Rightarrow x^2=9.4\)
\(\Rightarrow x^2=36=6^2\)
\(\Rightarrow x=6\)
Ta lại có:\(\frac{9}{x}=\frac{y}{14}\)
\(\Rightarrow\frac{9}{6}=\frac{y}{14}\)
\(\Rightarrow y=\frac{14.9}{6}\)
\(\Rightarrow y=21\)
Vậy \(x=6;y=21\)