Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có x:y:z=3:5:6
\(\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{6}\)
Đặt \(k=\frac{x}{3}=\frac{y}{5}=\frac{z}{6}\)
\(\Rightarrow x=3k\)
\(\Rightarrow y=5k\)
\(\Rightarrow z=6k\)
Thay vào \(\frac{2x-3y+4z}{x-11y-4z}=\frac{2.3k-3.5k+4.6k}{3k-11.5k-4.6k}\)\(=\frac{k.\left(2.3-3.5+4.6\right)}{k.\left(3-11.5-4.6\right)}=\frac{k.15}{k.\left(-76\right)}=\frac{15}{-76}\)
b) Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{1+2y}{18}=\frac{1+6y}{6x}=\frac{1+2y+1+6y}{18+6x}\)\(=\frac{2+8y}{18+6x}=\frac{2.\left(1+4y\right)}{2.\left(9+3x\right)}=\frac{1+4y}{9+3x}\)
\(\Rightarrow\frac{1+4y}{9+3x}=\frac{1+4y}{24}\Rightarrow9+3x=24\Rightarrow x=5\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{2x+1}{5}=\frac{4y-2}{7}=\frac{2x+4y-1}{6x}=\frac{\left(2x+1\right)+\left(4y-2\right)}{5+7}=\frac{2x+4y-1}{12}\)
\(\Rightarrow\frac{2x+4y-1}{6x}=\frac{2x+4y-1}{12}\)
\(\Rightarrow6x=12\)
\(\Rightarrow x=2\)
Thay x = 2 , ta được :
\(\frac{2x+1}{5}=\frac{4y-2}{7}\)
hay \(1=\frac{4y-2}{7}\Rightarrow4y-2=7\Rightarrow4y=9\Rightarrow y=\frac{9}{4}\)
Vậy x = 2 ; y = \(\frac{9}{4}\)
2) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{1+2y}{18}=\dfrac{1+6y}{6x}=\dfrac{1+2y+1+6y}{18+6x}=\dfrac{2\left(1+4y\right)}{2\left(9+3x\right)}=\dfrac{1+4y}{9+3x}\)
⇒ \(\dfrac{1+4y}{9+3x}=\dfrac{1+4y}{28}\)
⇒\(9+3x=28\)
⇒\(3x=19\)
⇒\(x=\dfrac{19}{3}\)
bạn thay vào là tìm được y
\(\frac{2x+1}{5}=\frac{4y-2}{7}=\frac{2x+4y-1}{6x}=\frac{2x+1+4y-2-2x-4y+1}{5+7-6x}=0.\)
\(\Rightarrow\frac{2x+1}{5}=0\Rightarrow x=-\frac{1}{2}\)
\(\Rightarrow\frac{4y-2}{7}=0\Rightarrow y=\frac{1}{2}\)