Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x3-9x2+27x-27=0
<=>(x-3)3=0
<=>x-3=0
<=>x=3
b) x3-25x=0
<=>x.(x2-25)=0
<=>x.(x-5)(x+5)=0
<=>x=0 hoặc x-5=0 hoặc x+5=0
<=>x=0 hoặc x=5 hoặc x=-5
c)9x2-1=0
<=>(3x-1)(3x+1)=0
<=>3x-1=0 hoặc 3x+1=0
<=>x=1/3 hoặc x=-1/3
a, x^3 - 9x^2 + 27x - 27 = 0
=> ( x - 3)^3 = 0
=> x - 3 = 0
=> x = 3
b, x^3 - 25x = 0
=> x(x^2 - 25) = 0
=> x(x-5)(x + 5) = 0
=> x =0 hoặc x - 5 = 0 hoặc x + 5 = 0
=> x= 0 hoặc x =5 hoặc x = -5
c, 9x^2 - 1 = 0
=> (3x)^2 - 1^2 = 0
=> ( 3x- 1)(3x+ 1) = 0
=> 3x - 1 = 0 hoặc 3x + 1 = 0
=> x = 1/3 hoặc x = -1/3
9x2-6x-3=0
=>9x2-9x+3x-3=0
=>(x-1)(9x-3)=0
=>x-1=0 hoặc 9x+3 = 0
=> x=1 hoặc x=-1/3
b. x3+9x2+27x+19=0
x3+x2+8x2+8x+19x+19=0
(x+1)(x2+8x+19)=0
x+1=0 => x=-1
x2+8x+19= x2+8x+16+3=(x+4)2+3 lớn hơn hoặc bằng 3., lớn hơn 0 với moị x
a, \(\Rightarrow3\left(3x^2-2x-1\right)=0\)
\(\Rightarrow3x^2-2x-1=0\)
\(\Rightarrow x\left(3x-2\right)=1\)
\(\Rightarrow\orbr{\begin{cases}x=1\\3x-2=1\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=1\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\3x-2=-1\end{cases}\Rightarrow}\orbr{\begin{cases}x=-1\\x=\frac{1}{3}\end{cases}}\)
b,\(\Rightarrow x^3+3x^2+6x^2+9x+18x+19=0\)
\(\Rightarrow x^2\left(x+3\right)+3x\left(x+3\right)+18\left(x+3\right)-2=0\)
\(\Rightarrow\left(x+3\right)\left(x^2+3x+18\right)=2\)
Mk k co thoi gian. buoc tiep theo tu lam not nhe
\(x^3+6x^2+9x=0\)
\(x\left(x^2+6x+9\right)=0\)
\(x\left(x+3\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x=-3\end{cases}}\)
a, ( x + 1 ) = 0
<=> x = -1
b, x3 - 9x2 + 27x - 27 = 0
<=> ( x - 3 )3 = 0
<=> x - 3 = 0
<=> x = 3
a) \(5x\left(x-4\right)-x^2+16=0\)
\(4x^2-20x+16=0\)
\(\Rightarrow\orbr{\begin{cases}x=4\\x=1\end{cases}}\)
b) \(x+6x^2+9x^2=0\)
\(x\left(3x+1\right)^2=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=-\frac{1}{3}\end{cases}}\)
b) \(x^2-2x-3=0\)
\(D=b^2-4ac\)
\(\left(-2\right)^2-\left(4\left(1.3\right)\right)=16\)
\(x_{1,2}=\frac{-b-\sqrt{D}}{2a}=\frac{2-\sqrt{16}}{2}\)
\(x=1;-3\)
x3 - 9x - 5x2 + 45 = 0
⇔ ( x3 - 5x2 ) - ( 9x - 45 ) = 0
⇔ x2( x - 5 ) - 9( x - 5 ) = 0
⇔ ( x - 5 )( x2 - 9 ) = 0
⇔ ( x - 5 )( x - 3 )( x + 3 ) = 0
⇔ x - 5 = 0 hoặc x - 3 = 0 hoặc x + 3 = 0
⇔ x = 5 hoặc x = ±3
\(x^3-9x-5x^2+45=0\)
\(x^3-5x^2-9x+45=0\)
\(x^2\left(x-5\right)-9\left(x-5\right)=0\)
\(\left(x-5\right)\left(x^2-9\right)=0\)
\(\orbr{\begin{cases}x-5=0\\x^2-9=0\end{cases}}\)
\(\orbr{\begin{cases}x=5\\x=\pm3\end{cases}}\)
a ) \(x^3-6x^2+12x-8=0\)
\(\Leftrightarrow x^3-3.x^2.2+3.x.2^2-2^3=0\)
\(\Leftrightarrow\left(x-2\right)^3=0\)
\(\Leftrightarrow\left(x-2\right)=0\)
\(\Leftrightarrow x=2\)
b ) \(x^3+9x^2+27x+27=0\)
\(\Leftrightarrow x^3+3.x^2.3+3.x.3^2+3^3=0\)
\(\Leftrightarrow\left(x-3\right)^3=0\)
\(\Leftrightarrow\left(x-3\right)=0\)
\(\Leftrightarrow x=3\)
a) x3 - 6x2 + 12x - 8 = 0
( x - 2 ) 3 = 0
x - 2 = 0
x = 2
b) x3 + 9x2 + 27x + 27 = 0
( x + 3 )3 = 0
x + 3 = 0
x = -3
\(x^3+9x=0\)
\(x\left(x^2+9\right)=0\)
\(x^2+9=0\)
\(x^2=-9\)
mà \(x^2\text{≥}\text{∀}x\)
⇒ Không tồn tại x thỏa mãn
ơ trường hợp x=0 đâu e ??