Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x3 - 9x - 5x2 + 45 = 0
⇔ ( x3 - 5x2 ) - ( 9x - 45 ) = 0
⇔ x2( x - 5 ) - 9( x - 5 ) = 0
⇔ ( x - 5 )( x2 - 9 ) = 0
⇔ ( x - 5 )( x - 3 )( x + 3 ) = 0
⇔ x - 5 = 0 hoặc x - 3 = 0 hoặc x + 3 = 0
⇔ x = 5 hoặc x = ±3
\(x^3-9x-5x^2+45=0\)
\(x^3-5x^2-9x+45=0\)
\(x^2\left(x-5\right)-9\left(x-5\right)=0\)
\(\left(x-5\right)\left(x^2-9\right)=0\)
\(\orbr{\begin{cases}x-5=0\\x^2-9=0\end{cases}}\)
\(\orbr{\begin{cases}x=5\\x=\pm3\end{cases}}\)
\(x^3+6x^2+9x=0\)
\(x\left(x^2+6x+9\right)=0\)
\(x\left(x+3\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x=-3\end{cases}}\)
d) \(4x^2-9-x\left(2x-3\right)=0\)
\(\Leftrightarrow4x^2-9-2x^2+3x=0\)
\(\Leftrightarrow2x^2+3x-9=0\)
\(\Delta=3^2-4.2.\left(-9\right)=9+72=81\)
Vậy pt có 2 nghiệm phân biệt
\(x_1=\frac{-3+\sqrt{81}}{4}=\frac{-3}{2}\);\(x_1=\frac{-3-\sqrt{81}}{4}=-3\)
e) \(x^3+5x^2+9x=-45\)
\(\Leftrightarrow x^3+5x^2+9x+45=0\)
\(\Leftrightarrow x^2\left(x+5\right)+9\left(x+5\right)=0\)
\(\Leftrightarrow\left(x^2+9\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+9=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm3i\\x=-5\end{cases}}\)
Ta có: \(x^3+5x^2+9x+45=0\)
\(\Leftrightarrow x^2\left(x+5\right)+9\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x^2+9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x^2+9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-5\\x\in\varnothing\end{cases}}\)\(\Leftrightarrow x=-5\)
k mình nha bn thanks nhìu
1) \(x^3+5x^2+9x=-45\)
\(\Rightarrow x^2\left(x+5\right)+9x+45=0\)
\(\Rightarrow x^2\left(x+5\right)+9\left(x+5\right)=0\)
\(\Rightarrow\left(x^2+9\right)\left(x+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2+9=0\\x+5=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x^2=-9\left(loai\right)\\x=-5\left(nhan\right)\end{cases}}\)
2) \(x^3-6x^2-x+30=0\)
\(\Rightarrow x^3-3x^2-3x^2+9x-10x+30=0\)
\(\Rightarrow x^2\left(x-3\right)-3x\left(x-3\right)-10\left(x-3\right)=0\)
\(\Rightarrow\left(x^2-3x-10\right)\left(x-3\right)=0\)
\(\Rightarrow\left(x^2-5x+2x-10\right)\left(x-3\right)=0\)
\(\Rightarrow\left[x\left(x-5\right)+2\left(x-5\right)\right]\left(x-3\right)=0\)
\(\Rightarrow\left(x+2\right)\left(x-3\right)\left(x-5\right)=0\)
\(\)Từ đây giải x giống câu trên nhé.
3) \(x^2+16=10x\)
\(\Rightarrow x^2-10x+16=0\)
\(\Rightarrow\left(x-8\right)\left(x-2\right)=0\)
Tương tự....
a)\(7x\left(x-2\right)=\left(x-2\right)\)
\(\Leftrightarrow7x\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(7x-1\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}7x-1=0\\x-2=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{7}\\x=2\end{matrix}\right.\)
b)\(4x^2-9-x\left(2x-3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(2x+3\right)-x\left(2x-3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(2x+3-x\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=0\\x+3=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-3\end{matrix}\right.\)
c)\(x^3+5x^2+9x=-45\)
\(\Leftrightarrow x^3+9x+5x^2+45=0\)
\(\Leftrightarrow x\left(x^2+9\right)+5\left(x^2+9\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x^2+9\right)=0\)
Dễ thấy: \(x^2+9\ge 9 >0\forall x\)
\(\Rightarrow x+5=0\Rightarrow x=-5\)
d,e tương tự
a, \(5x\left(x-1\right)+\left(x+17\right)=0\)
\(\Leftrightarrow5x^2-5x+x+17=0\Leftrightarrow5x^2-4x+17=0\)
\(\Leftrightarrow5\left(x^2-\frac{4}{5}x\right)+17=0\Leftrightarrow5\left(x^2-2.\frac{2}{5}x+\frac{4}{25}-\frac{4}{25}\right)+17=0\)
\(\Leftrightarrow5\left(x-\frac{2}{5}\right)^2-\frac{4}{5}+17=0\Leftrightarrow5\left(x-\frac{2}{5}\right)^2+81\ge81>0\)
Vậy pt vô nghiệm
b, \(3x\left(x-3\right)^2-3x\left(x+3\right)^2=0\)
\(\Leftrightarrow3x\left[\left(x-3\right)^2-\left(x+3\right)^2\right]=0\)
\(\Leftrightarrow3x\left(x-3-x-3\right)\left(x-3+x+3\right)=0\Leftrightarrow x.2x=0\Leftrightarrow x=0\)
c, \(2x^2-9x+7=0\Leftrightarrow2x^2-7x-2x+7=0\)
\(\Leftrightarrow x\left(2x-7\right)-\left(2x-7\right)=0\Leftrightarrow\left(x-1\right)\left(2x-7\right)=0\Leftrightarrow x=1;x=\frac{7}{2}\)
Trả lời:
a, \(5x\left(x-1\right)+\left(x+17\right)=0\)
\(\Leftrightarrow5x^2-5x+x+17=0\)
\(\Leftrightarrow5x^2-4x+17=0\)
\(\Leftrightarrow5\left(x^2-\frac{4}{5}x+\frac{17}{5}\right)=0\)
\(\Leftrightarrow x^2-\frac{4}{5}x+\frac{17}{5}=0\)
\(\Leftrightarrow x^2-2.x.\frac{2}{5}+\frac{4}{25}+\frac{81}{25}=0\)
\(\Leftrightarrow\left(x-\frac{2}{5}\right)^2+\frac{81}{25}=0\)
Vì \(\left(x-\frac{2}{5}\right)^2+\frac{81}{25}\ge\frac{81}{25}>0\forall x\)
nên pt vô nghiệm
b, \(3x\left(x-3\right)^2-3x\left(x+3\right)^2=0\)
\(\Leftrightarrow3x\left[\left(x-3\right)^2-\left(x+3\right)^2\right]=0\)
\(\Leftrightarrow3x\left(x-3-x-3\right)\left(x-3+x+3\right)=0\)
\(\Leftrightarrow3x.\left(-9\right).2x=0\)
\(\Leftrightarrow-54x^2=0\)
\(\Leftrightarrow x^2=0\)
\(\Leftrightarrow x=0\)
Vậy x = 0 là nghiệm của pt.
c, \(7-9x+2x^2=0\)
\(\Leftrightarrow2x^2-7x-2x+7=0\)
\(\Leftrightarrow x\left(2x-7\right)-\left(2x-7\right)=0\)
\(\Leftrightarrow\left(2x-7\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-7=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=1\end{cases}}}\)
Vậy x = 7/2; x = 1 là nghiệm của pt.
d, trùng ý c
x^3-5x^2-9x+45=0
=> x^3 + 3x^2 - 8x^2 - 24x + 15x + 45 = 0
=> x^2(x + 3) - 8x(x + 3) + 15(x + 3) = 0
=> (x^2 - 8x + 15)(x + 3) = 0
=> (x - 3)(x - 5)(x + 3) = 0
=> x = 3 hoặc x = 5 hoặc x = -3
x^3-5x^2-9x+45=0
(x^3-5x^2)-(9x-45)=0
x^2(x-5)-9(x-5)=0
(x-5)(x^2-9)=0
(x-5)(x+3)(x-3)=0
x-5=0 hoặc x+3=0 hoặc x-3=0
x=5 x=-3 x=3