K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2017

1. a, Để \(\dfrac{26}{x+3}\in N\Leftrightarrow26⋮x+3\)
=> x + 3 \(\inƯ\left(26\right)=\left\{\pm1;\pm2;\pm13;\pm26\right\}\)
=> x = -2; -4; -1; -5; 10; -16; 23; -29 (thỏa mãn)
b, Để \(\dfrac{x+6}{x+3}\in N\Leftrightarrow x+6⋮x+3\)
<=> x + 3 + 3 \(⋮x+3\)
<=> 3 \(⋮x+3\)
=> x + 3 \(\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
=> x = -2; -4; 0; -6 (thỏa mãn)
c, Để \(\dfrac{2x+1}{x+3}\Leftrightarrow2x+1⋮x+3\)
<=> 2(x + 1) - 1 \(⋮x+3\)
<=> -1 \(⋮x+3\)
=> x + 3 \(\inƯ\left(1\right)=\left\{\pm1\right\}\)
=> x = -2; -4 (thỏa mãn)
@Nguyễn Bá Minh

5 tháng 8 2017

2. a, (x - 1)(y + 2) = -7
Do x; y \(\in Z\Rightarrow x-1;y+2\in Z\)
Mà (x - 1)(y + 2) = -7
=> x - 1; y + 2 \(\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Nếu \(\left\{{}\begin{matrix}x-1=1\\y+2=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-9\end{matrix}\right.\) (thỏa mãn)

Nếu \(\left\{{}\begin{matrix}x-1=-1\\y+2=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=5\end{matrix}\right.\) (thỏa mãn)

Nếu \(\left\{{}\begin{matrix}x-1=7\\y+2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=-3\end{matrix}\right.\) (thỏa mãn)

Nếu \(\left\{{}\begin{matrix}x-1=-7\\y+2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-1\end{matrix}\right.\) (thỏa mãn)

Vậy các cặp (x; y) thỏa mãn là (2; -9); (0; 5); (8; -3); (-6; -1)
@Nguyễn Bá Minh

27 tháng 10 2015

1139 là số nguyên tố.a\

12 tháng 11 2023

Bài 1

a) (x + 3)(x + 2) = 0

x + 3 = 0 hoặc x + 2 = 0

*) x + 3 = 0

x = 0 - 3

x = -3 (nhận)

*) x + 2 = 0

x = 0 - 2

x = -2 (nhận)

Vậy x = -3; x = -2

b) (7 - x)³ = -8

(7 - x)³ = (-2)³

7 - x = -2

x = 7 + 2

x = 9 (nhận)

Vậy x = 9

12 tháng 11 2023

Thanks

 

10 tháng 1 2017

a)     xy+3x-7y=21
        xy+3x-7y-21=0
        (xy+3x)-(7y+21)=0
        x(y+3)-7(y+3)=0
        (x-7)(y+3)=0
   => X-7=0 hoặc y+3=0
 * Nếu x-7=0
           x=7
 * Nếu y+3=0
           y=-3
Vậy .....

17 tháng 1 2023

loading...  loading...  

22 tháng 1 2019

\(\left(x-3\right)\left(x-12\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=12\end{cases}}\)

\(\Rightarrow x\in\left\{3;12\right\}\)

\(\left(x^2-81\right)\left(x^2+9\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^2-81=0\\x^2+9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=9\\x\in\varnothing\end{cases}}\Leftrightarrow x=9\)

\(\Rightarrow x=9\)

\(\left(x-4\right)\left(x+2\right)< 0\)

\(\Rightarrow\hept{\begin{cases}x-4\\x+2\end{cases}}\)trái dấu

\(TH1:\hept{\begin{cases}x-4>0\\x+2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>4\\x< -2\end{cases}}\Leftrightarrow x\in\varnothing\)

\(TH2:\hept{\begin{cases}x-4< 0\\x+2>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 4\\x>-2\end{cases}}\Leftrightarrow x\in\left\{-1;0;1;2;3\right\}\)

Vậy \(x\in\left\{-1;0;1;2;3\right\}\)

14 tháng 4 2020

a, Ta có : \(14⋮2x-3\)

\(\Rightarrow2x-3\inƯ\left(14\right)=\left\{\pm1;\pm2;\pm7;\pm14\right\}\)

Vì \(2x-3\)là số lẻ

\(\Rightarrow2x-3\in\left\{\pm1;\pm7\right\}\)

...   (tự làm)

\(b,\left(x-3\right)\left(y+2\right)=-7\)

\(x+3\)và \(y+2\)là số nguyên

\(\Rightarrow x+3,y+2\inƯ\left(-7\right)=\left\{\pm1;\pm7;\right\}\)

...  

\(c,x\left(y-1\right)=9\)

\(x\)và \(y-1\)là số lẻ

\(\Rightarrow x,y-1\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)

...