\(\frac{n-8}{n+3}\)là một...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2018

Sai đề. Tìm x mà lại cho n? Mình sửa lại là tìm n nhé

Để \(\frac{n-8}{n+3}\)là một số nguyên, \(n-8\)phải chia hết cho \(n+3\)

\(\Rightarrow n-8⋮n+3\)

\(\Rightarrow n-8-n+3⋮n+3\)

\(\Rightarrow11⋮n+3\Rightarrow n+3\inƯ\left(11\right)\)

\(Ư\left(11\right)=\left\{\pm1;\pm11\right\}\)

\(+n+3=1\Rightarrow n=1-3=-2\)

\(+n+3=-1\Rightarrow n=\left(-1\right)-3=-4\)

\(+n+3=11\Rightarrow n=11-3=8\)

\(+n+3=-11\Rightarrow n=-11-3=-14\)

\(\Rightarrow n\in\left\{-2;-4;8;-14\right\}\)

6 tháng 5 2018

\(Để\frac{n-8}{n+3}\in Z\)

\(\Rightarrow n-8⋮n+3\)

\(\Rightarrow n+3-11⋮n+3\)

Do \(n+3⋮n+3\Rightarrow11⋮n+3\)

\(\Rightarrow n+3\in\left(1;-1;11;-11\right)\)

\(\Rightarrow n\in\left(-2;-4;8;-14\right)\)

a)      n phải khác 2

b)     để A nguyên thì 

1 chia hết cho 2-n

=> 2-n thuộc  tập ước của 1 

=> hoặc 2-n=1 =>n=1

hoặc 2-n=-1 =>n=3

hk tốt

1 tháng 5 2019

a) Để A là phân số thì \(2-n\ne0\)

\(\Leftrightarrow n\ne2\)

b) Để A nguyên thì \(1⋮\left(2-n\right)\)

\(\Leftrightarrow2-n\inƯ\left(1\right)=\left\{\pm1\right\}\)

Lập bảng:

\(2-n\)\(1\)\(-1\)
\(n\)\(1\)\(3\)

Vậy n = 1 hoặc n = 3 thì A nguyên

DD
8 tháng 7 2021

\(\frac{2n-1}{n+8}-\frac{n-14}{n+8}=\frac{2n-1-\left(n-14\right)}{n+8}=\frac{n+13}{n+8}\)

\(=\frac{n+8+5}{n+8}=1+\frac{5}{n+8}\inℤ\Leftrightarrow\frac{5}{n+8}\inℤ\)

mà \(n\inℤ\)nên \(n+8\)là ước của \(5\)suy ra \(n+8\in\left\{-5,-1,1,5\right\}\Leftrightarrow n\in\left\{-13,-9,-7,-3\right\}\).

8 tháng 7 2021

\(\frac{2n-1}{n+8}-\frac{n-14}{n+8}=\frac{n+13}{n+8}=\frac{n+8+5}{n+8}=1+\frac{5}{n+8}.\)

Để biểu thức là số nguyên thì n+8 là ước của 5

\(\Rightarrow n+8=\left\{-5;-1;1;5\right\}\Rightarrow n=\left\{-13;-9;-7;-3\right\}\)

4 tháng 4 2020

a. Tìm n để B tồn tại.

Để B tồn tại thì \(n-3\ne0\Leftrightarrow n\ne3\)

b. Tìm n để B là một số nguyên.

Để B là một số nguyên thì \(\frac{4}{n-3}\in Z\)

\(\Rightarrow n-3\in\left\{1;2;4;-1;-2;-4\right\}\)

\(\Leftrightarrow n\in\left\{4;5;7;2;1;-1\right\}\)


\(13x=13\Leftrightarrow x=1\)

\(\left(x-1\right)\left(y+3\right)=-5\)

\(TH1\hept{\begin{cases}x-1=-5\\y+3=1\end{cases}\Rightarrow\hept{\begin{cases}x=-4\\y=-2\end{cases}}}\)

\(TH2\hept{\begin{cases}x-1=5\\y+3=-1\end{cases}\Rightarrow\hept{\begin{cases}x=6\\y=2\end{cases}}}\)

\(2n+1⋮n-3\)

\(2n-6+7⋮n-3\)

\(7⋮n-3\)

\(\Rightarrow n-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Tự lập bảng ....

Tương tự bài tiếp theo nhen 

Mấy bài kia chắc c lm đc r nhỉ

2. a)   \(2n+1⋮n-3\)

\(\Leftrightarrow2.\left(n-3\right)+7⋮n-3\)

\(\Leftrightarrow7⋮n-3\)

\(\Leftrightarrow n-3\in\left\{-7;-1;1;7\right\}\)

\(\Leftrightarrow n\in\left\{-4;2;4;10\right\}\) ( thỏa mãn n nguyên )

Vậy \(n\in\left\{-4;2;4;10\right\}\)

b) \(3n+8⋮n+1\)

\(\Leftrightarrow3.\left(n+1\right)+5⋮n+1\)

\(\Leftrightarrow5⋮n+1\)

\(\Leftrightarrow n+1\in\left\{-5;-1;1;5\right\}\)

\(\Leftrightarrow n\in\left\{-6;-2;0;4\right\}\)  ( thỏa mãn n nguyên )

Vậy \(n\in\left\{-6;-2;0;4\right\}\)

~~~~~~~~~~ Học tốt nha ~~~~~~~~~~~~~~~~~

để ps A nguyên thì n+3 chia hết cho n-2

suy ra (n-2)+5 chia hết cho n-2

suy ra 5 chia hết cho n-2

suy ra n-2 thuộc {1;-1;5;-5}

n thuộc {3;1;7;-3}

2)có 1/(a+1)+1/a.(a+1)=a.(a+1)/[(a+1).a.(a+1)]+(a+1)/[(a+1).a.(a+1)](nhân chéo)=a.(a+1)+(a+1)/a.(a+1).(a+1)=(a+1)(a+1)/a.(a+1).(a+1)=1/a

áp dụng :1/5=1/(5+1)+1/5.(5+1)=1/6+1/30

17 tháng 2 2015

1.

A=\(\frac{n-2+5}{n+2}\)có công thức \(\frac{a}{c}+\frac{b}{c}=\frac{a+b}{c}\) 

A=\(1+\frac{5}{n-2}\)

Ư(5)={-5;-1;1;5}

thay giô các kết quả 

n-2=-5

n=-2 ( chọn)

n-2=-1

n= 1 (chọn)

n-2=1

n=3 (chọn)

n-2=5

n=7 (chọn)

vậy n= -2;1;3;7

 

 

2.

\(\frac{1}{a}=\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}\)

ta biến đổi \(\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}\)thành \(\frac{1}{a}\)

ta thấy trong \(\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}\)có về 2 gấp vế trước a lần

ta quy đồng  \(\frac{a}{a.\left(a+1\right)}+\frac{1}{a\left(a+1\right)}=\frac{a+1}{a.\left(a+1\right)}\)cùng có a+1 ở tử và mẫu ta cùng gạch thì nó thành

\(\frac{1}{a}\)

vậy :\(\frac{1}{a}=\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}\)

15 tháng 3 2019

để 10n/5n-3 là số nguyên(n thuộc Z) suy ra 10n chia hết cho 5n-3

suy ra 5n-3 chia hết cho 5n-3 suy ra 2(5n-3) hay10n-6 chia hết cho 5n-3

suy ra 10n-(10n-6) chia hết cho 5n-3

 suy ra 6 chia hết cho 5n-3

suy ra 5n-3 thuộc ư(6)={2;-3}

           5n thuộc {5;0}

           n thuộc {1;0}     

           

15 tháng 3 2019

Ta có 1/101+1/102+...+1/200>1/200+1/200+...+1/200(có 100 phân số 1/200)=1/2

suy ra

  1/2<D

Ta có 1/101+1/102+...+1/200<1/100+1/100+...+1/100(100 phân số 1/100)=1

Vậy 1/2<D<1(thỏa mãn điều kiện chứng minh)

11 tháng 2 2020

a) Để phân số \(\frac{12}{3n-1}\)có giá trị là 1 số nguyên

\(\Rightarrow\)12\(⋮\)3n-1

\(\Rightarrow3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm12\right\}\)

Tiếp theo bạn tìm số nguyên n như thường, nếu có giá trị là phân số thì bỏ nên bạn tự làm nhé!

b) Để phân số \(\frac{2n+3}{7}\)có giá trị là 1 số nguyên 

\(\Rightarrow\)2n+3\(⋮\)7

\(\Rightarrow\)2n+3=7k  

\(\Rightarrow n=\frac{7k-3}{2}\)

a, \(A=\frac{n+7}{n+2}=\frac{n+2+5}{n+2}=\frac{5}{n+2}\)

\(\Rightarrow n+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Ta lập bảng 

n + 21-15-5
n-1-33-7

b, \(B=\frac{n+5}{n-2}=\frac{n-2+7}{n-2}=\frac{7}{n-2}\)

\(\Rightarrow n-2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Ta lập bảng 

n - 21-17-7
n319-5

c, \(C=\frac{2n+13}{n+1}=\frac{2\left(n+1\right)+11}{n+1}=\frac{11}{n+1}\)

\(\Rightarrow n+1\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

Ta lập bảng

n + 11-111-11
n0-210-12
26 tháng 6 2020

d) Để D là số nguyên <=> \(\frac{3n+7}{2n+3}\)là số nguyên

<=> \(3n+7⋮2n+3\)

<=> 2(3n + 7) \(⋮\) 2n + 3

<=> 6n + 14 \(⋮\)2n + 3

<=> 3(2n + 3) + 5 \(⋮\)2n + 3

<=> 5 \(⋮\)2n + 3 (vì 3(2n + 3) \(⋮\)2n + 3)

<=> 2n + 3 \(\in\)Ư(5) = {1; -1; 5; -5}

Lập bảng:

2n + 3 1 -1 5 -5
  n -1 -2 1 -4

Vậy ....

17 tháng 5 2019

Để A là số nguyên

 \(\Leftrightarrow n+1⋮n-2\)

\(\Leftrightarrow n-2+3⋮n-2\)

mà \(n-2⋮n-2\)

\(\Rightarrow3⋮n-2\)

\(\Rightarrow n-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

tự tìm n 

17 tháng 5 2019

\(A=\frac{n+1}{n-2}=\frac{\left(n-2\right)+3}{n-2}\)

                         \(=1+\frac{3}{n-2}\)

Để \(A\)là số nguyên thì \(1+\frac{3}{n-2}\in Z\)hay \(\frac{3}{n-2}\in Z\Rightarrow3⋮n-2\)

\(\Leftrightarrow n-2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\Rightarrow n\in\left\{-1;1;3;5\right\}.\)