Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có: 3x + 5 chia hết cho x + 1
=> 3x + 3 + 2 chia hết cho x + 1
3.(x+1) + 2 chia hết cho x + 1
mà 3.(x+1) chia hết cho x + 1
=> 2 chia hết cho x + 1
...
bn tự làm tiếp nha! phần b làm tương tự
a) 35 chia hết cho x => x thuộc Ư(35)={ 1;-1;5;-5;7;-7;35;-35}
=> x thuộc { 1;-1;5;-5;7;-7;35;-35}
đ) x+16 chia hết cho x+1 => (x+15+1 ) chia hết cho x+1
= > (x+1) chia hết cho (x+1) VÀ (x+5) chia hết cho (x+1)
=> (x+1) thuộc Ư(15) và x+1 phải lớn hơn hoặc = 1
Ư(15 ) = {1;3;5;15 }
bạn nêu ra từng th nha : vd như :
x+1=1=>x=0
tự làm nha , tk mk đi
1) 5 chia hết cho n+1
Suy ra n+1 thuộc Ư(5) bằng {1;5}
n+1 bằng 1 suy ra n bằng 0
n+1 bằng 5 suy ra n bằng 4
Vậy n thuộc {0;4}
2) 7 chia hết cho n+2
Suy ra n+2 thuộc Ư(7) bằng {1;7}
n+2 bằng 1 (loại)
n+2 bằng 7 suy ra n bằng 5
Vậy n bằng 5.
1/ 15a +140 = 5. (3a +28) \(\Rightarrow\)biểu thức chia hết cho 5 với mọi a thuộc N
2/ 39a + 50 = 39a + 39 + 11 = 13 (3a + 3) + 11.
Ta có: 13 (3a + 3) chia hết cho 13
11 không chia hết cho 13
\(\Rightarrow\)Biểu thức trên không chia hết cho 13.
Câu 3, 4, 5, 6 đề không rõ nên mình không làm nhé. Bạn phải đặt điều kiện cho x nữa để xác định biểu thức đó chia hết hay không.
a, ( x+ 4 ) \(⋮\) ( x-1 )
Ta có : x+4 = x-1 + 5 mà ( x-1) \(⋮\) ( x-1 ) để ( x+ 4 ) \(⋮\) ( x-1 ) thì => 4 \(⋮\) ( x-1 )
hay x-1 thuộc Ư(4) = { 1;2;4}
ta có bảng sau
x-1 | 1 | 2 | 4 |
x | 2 | 3 | 5 |
Vậy x \(\in\) { 2;3;5 }
b, (3x+7 ) \(⋮\) ( x+1 )
Ta có : 3x+7 = 3(x+1) + 4 mà 3(x+1) \(⋮\) ( x+1) để (3x+7 ) \(⋮\) ( x+1 ) thì => 4 \(⋮\) ( x+1 )
hay x+1 thuộc Ư ( 4) = { 1;2;4}
Ta có bảng sau
x+1 | 1 | 2 | 4 |
x | 0 | 1 | 3 |
Vậy x \(\in\) {0;1;3} ( mik chỉ lm đến đây thôi , thông kảm )
Mọi người giúp mik nhanh nha!!! mik đang cần gấp.
Tìm số tự nhiên x sao cho x + 3 chia hết cho x2 + 1
Vì x+3 chia hết cho x^2+1
suy ra x(x+3) chia hết cho x^2+1
X^2+3x chia hết cho x^2+1 (1)
Mà x^2+1 chia hết cho x^2+1 (2)
từ (1) và (2) có:(x^2+3x)-(x^2+1) chia hết cho x^2+1
x^2 + 3x - x^2 - 1 chia hét cho ...........(như trên)
3x-1 chia hết cho ............. (3)
Lại có x+3 chia hết cho .............. suy ra 3x +9 chia hết cho ............ (4)
từ (3) và (4) có: (3x+9) - (3x-1) chia hết cho..........
3x + 9 - 3x + 1 chia hết cho ................
10 chia hết cho x^2+1
suy ra x^2+1 thuộc ước của 10={.........}
lập bảng:
x^2+1 1 -1 2 -2 5 -5 10 -10
x^2 0 -2 1 -3 4 -6 9 -11
x 0 loại 1 loại 2 loại 3 loại
vậy x thuộc {0;1;2;3}
Bài 1:
ta có: A = 11^9+11^8+..+11+1
=> 11A = 11^10+11^9+...+11^2+11
=> 11A-A = 11^10-1
10A = 11^10 -1
mà (11^10)-1 = (...1) - 1 = (...0) chia hết cho 10
=> A = (11^10-1):10 sẽ chia hết
=> A chia hết cho 5
Bài 2:
ta