Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a;\(\dfrac{-6}{11}\) : \(\dfrac{12}{55}\) = \(\dfrac{-5}{2}\)
b;\(\dfrac{7}{12}\) + \(\dfrac{5}{72}\) - \(\dfrac{11}{36}\) = \(\dfrac{47}{72}\) - \(\dfrac{11}{36}\) = \(\dfrac{25}{72}\)
c;\(\dfrac{13}{10}\) : \(\dfrac{-5}{13}\) = \(\dfrac{-169}{50}\)
d; {\(\dfrac{5}{12}\) + \(\dfrac{5}{11}\) } : { \(\dfrac{5}{3}\) -\(\dfrac{7}{11}\) } = \(\dfrac{115}{132}\) : \(\dfrac{34}{33}\) = \(\dfrac{115}{136}\)
lưu ý mk ko chép đầu bài
mình cần gấp lắm đến chiều mai là phải nộp rùi
giúp mình nha thanks cá bạn trước ko có tâm trạng mà cười nữa
Các bạn ơi,mình ghi thiếu,còn 3 câu nữa nha!!!~~nya
e)| \(\dfrac{5}{2}\)x-\(\dfrac{1}{2}\) |-(-22).\(\dfrac{1}{3}\)(0,75-\(\dfrac{1}{7}\))=\(\dfrac{-5}{13}\):2\(\dfrac{9}{13}\)-0,5.(\(\dfrac{-2}{3}\))
f)| 5x+21 | = | 2x -63 |
g) -45 - |-3x-96 | - 54=-207
Làm ơn giúp mình với ạ!Mình đang cần gấp lắm trong ngày hôm nay ạ!!!Mình xin cảm ơn các bạn nhiều nhiều lắm luôn đó!!!Thank you very much!!!(^-^)
a, (\(\dfrac{2}{9}\)(6x - \(\dfrac{3}{4}\)) - 3(\(\dfrac{1}{4}x-\dfrac{1}{5}\)) = \(\dfrac{-8}{15}\)
<=> (\(\dfrac{4}{3}x-\dfrac{1}{6}\)) - (\(\dfrac{3}{4}x-\dfrac{3}{5}\)) = \(\dfrac{-8}{15}\)
<=> \(\dfrac{4}{3}x-\dfrac{1}{6}-\dfrac{3}{4}x+\dfrac{3}{5}=\dfrac{-8}{15}\)
<=> \(\dfrac{7}{12}x+\dfrac{13}{30}=\dfrac{-8}{15}\)
<=> \(\dfrac{7}{12}x=\dfrac{-8}{15}-\dfrac{13}{30}\)
<=> \(\dfrac{7}{12}x=-\dfrac{29}{30}\)
<=> x = \(-\dfrac{58}{35}\)
@Nguyễn Gia Hân
Bài 1: Tính ( hợp lý nếu có thể )
\(A=\dfrac{-3}{8}+\dfrac{12}{25}+\dfrac{5}{-8}+\dfrac{2}{-5}+\dfrac{13}{25}\)
\(=\left(\dfrac{-3}{8}+\dfrac{5}{-8}\right)+\left(\dfrac{12}{25}+\dfrac{13}{25}\right)+\dfrac{2}{-5}\)
\(=-1+1+\dfrac{2}{-5}\)
\(=0+\dfrac{2}{-5}\)
\(=\dfrac{2}{-5}\)
\(B=\dfrac{-3}{15}+\left(\dfrac{2}{3}+\dfrac{3}{15}\right)\)
\(=\left(\dfrac{-3}{15}+\dfrac{3}{15}\right)+\dfrac{2}{3}\)
\(=0+\dfrac{2}{3}\)
\(=\dfrac{2}{3}\)
\(C=\dfrac{-5}{21}+\left(\dfrac{-16}{21}+1\right)\)
\(=\left(\dfrac{-5}{21}+\dfrac{-16}{21}\right)+1\)
\(=-1+1\)
\(=0\)
\(D=\left(\dfrac{-1}{6}+\dfrac{5}{-12}\right)+\dfrac{7}{12}\)
\(=\left(\dfrac{5}{-12}+\dfrac{7}{12}\right)+\dfrac{-1}{6}\)
\(=\dfrac{1}{6}+\dfrac{-1}{6}\)
\(=0\)
Bài 2: Tìm x,biết:
a) \(x+\dfrac{2}{3}=\dfrac{4}{5}\)
\(x=\dfrac{4}{5}-\dfrac{2}{3}\)
\(x=\dfrac{2}{15}\)
Vậy \(x=\dfrac{2}{15}\)
b) \(x-\dfrac{2}{3}=\dfrac{7}{21}\)
\(\Rightarrow x-\dfrac{2}{3}=\dfrac{1}{3}\)
\(x=\dfrac{1}{3}+\dfrac{2}{3}\)
\(x=\dfrac{3}{3}=1\)
Vậy \(x=1\)
c) sai đề hay sao ấy bạn.bỏ dấu - ở x thì đúng đề.mk giải luôn nha!
\(x-\dfrac{3}{4}=\dfrac{-8}{11}\)
\(x=\dfrac{-8}{11}+\dfrac{3}{4}\)
\(x=\dfrac{1}{44}\)
Vậy \(x=\dfrac{1}{44}\)
d) \(\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}\)
\(\dfrac{2}{5}+x=\dfrac{11}{12}-\dfrac{2}{3}\)
\(\dfrac{2}{5}+x=\dfrac{1}{4}\)
\(x=\dfrac{1}{4}-\dfrac{2}{5}\)
\(x=-\dfrac{3}{20}\)
Vậy \(x=-\dfrac{3}{20}\)
a) \(\left(19x+2\times5^2\right):14=\left(13-8\right)^2-4^2\)
\(\Rightarrow\left(19x+50\right):14=5^2-4^2=25-16=9\)
\(\Rightarrow19x+50=126\)
\(\Rightarrow19x=76\Rightarrow x=4\)
Vậy x = 4
b) \(2\times3^2=10\times3^{12}+8\times27^4\)
\(\Rightarrow2\times3^2=10\times\left(3^3\right)^4+8\times27^4\)
\(\Rightarrow2\times3^2=27^4\times\left(10+8\right)\)
\(\Rightarrow18=27^4\times18\)
\(\Rightarrow27^4\times18-18=0\Rightarrow18\times\left(27^4-1\right)=0\)
=> Không thấy biến x đâu cả
c) Ta thấy 33 = 27
\(\Rightarrow3^{2x-5}=3^3\Rightarrow2x-5=3\Rightarrow2x=8\Rightarrow x=4\)
Vậy x = 4
d) \(3^{x+1}-x=80\Rightarrow3^{x+1}=81\)
Ta thấy 34 = 81
\(\Rightarrow3^{x+1}=3^4\Rightarrow x+1=4\Rightarrow x=3\)
Vậy x = 3
\(2-\left|\frac{3}{4}-x\right|=\frac{7}{12}\)
\(\left|\frac{3}{4}-x\right|=\frac{17}{12}\)
\(\Rightarrow\frac{3}{4}-x=\orbr{\begin{cases}\frac{17}{12}\\-\frac{17}{12}\end{cases}\Rightarrow x=\orbr{\begin{cases}-\frac{2}{3}\\\frac{13}{6}\end{cases}}}\)
\(\frac{1}{2}x+\frac{1}{8}x=\frac{3}{4}\)
\(x\left(\frac{1}{2}+\frac{1}{8}\right)=\frac{3}{4}\)
\(x.\frac{5}{8}=\frac{3}{4}\)
\(\Rightarrow x=\frac{3}{4}:\frac{5}{8}\)
\(\Rightarrow x=\frac{6}{5}\)
8 + 12 + \(x\) ⋮ 2
Vì 8; 12 ⋮ 2 ⇒ \(x\) ⋮ 2 ⇒ \(x\) \(\in\) B(2) ⇒ \(x=2k\) (k \(\in\) Z)