K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 2 2020

\(\sqrt{x}+1⋮\sqrt{x-3}\left(đk:x\ge0\right)\)

\(\Leftrightarrow\left(\sqrt{x}+1\right)-\left(\sqrt{x}-3\right)⋮\sqrt{x}-3\)

\(\Leftrightarrow4⋮\sqrt{x-3}\)

\(\Leftrightarrow4⋮\sqrt{x-3}\Rightarrow\sqrt{x-3}\inƯ\left(4\right)\)

\(\Leftrightarrow\sqrt{x-3}\in\left\{1;2;3;4;-1;-2;4\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{4;5;7;2;1;-1\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{4;5;7;2;1\right\}\)

\(\Leftrightarrow x\in\left\{16;25;49;4;1\right\}\)

P/S: Bn loại các TH x thuộc Z ko t/m nhé

29 tháng 2 2020

Để \(\sqrt{x}+1⋮\sqrt{x}-3\)

\(\Leftrightarrow\sqrt{x}-3+4⋮\sqrt{x}-3\)

\(\Leftrightarrow4⋮\sqrt{x}-3\)

\(\Leftrightarrow\sqrt{x}-3\inƯ\left(4\right)\)

\(\Leftrightarrow\sqrt{x}-3\in\left\{-1,1,-2,2,-4,4\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{2,4,1,5,-1,7\right\}\)

Mà : \(x\inℤ\Rightarrow\sqrt{x}\) phải là một số chính phương

\(\Rightarrow\sqrt{x}\in\left\{4,1\right\}\)

\(\Leftrightarrow x\in\left\{2,1\right\}\)

NV
21 tháng 3 2023

\(A=\dfrac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\dfrac{4}{\sqrt{x}-3}\)

Để A nguyên \(\Rightarrow4⋮\left(\sqrt{x}-3\right)\Rightarrow\sqrt{x}-3=Ư\left(4\right)\)

Mà \(\sqrt{x}-3\ge-3\Rightarrow\sqrt{x}-3=\left\{-2;-1;1;2;4\right\}\)

\(\Rightarrow\sqrt{x}=\left\{1;2;4;5;7\right\}\)

\(\Rightarrow x=\left\{1;4;16;25;49\right\}\)

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)

Để A nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)

\(\Leftrightarrow\sqrt{x}-3+4⋮\sqrt{x}-3\)

mà \(\sqrt{x}-3⋮\sqrt{x}-3\)

nên \(4⋮\sqrt{x}-3\)

\(\Leftrightarrow\sqrt{x}-3\inƯ\left(4\right)\)

\(\Leftrightarrow\sqrt{x}-3\in\left\{1;-1;2;-2;4;-4\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{4;2;5;1;7;-1\right\}\)

mà \(\sqrt{x}\ge0\forall x\) thỏa mãn ĐKXĐ

nên \(\sqrt{x}\in\left\{1;2;4;5;7\right\}\)

hay \(x\in\left\{1;4;16;25;49\right\}\)(nhận)

Vậy: Để A nguyên thì \(x\in\left\{1;4;16;25;49\right\}\)

7 tháng 2 2020

duocwj

7 tháng 2 2020

\(\sqrt{x}+1⋮\sqrt{x}-3\)

\(\Rightarrow\sqrt{x}-3+4⋮\sqrt{x}-3\)

\(\Rightarrow4⋮\sqrt{x}-3\)

\(\Rightarrow\sqrt{x}-3\inƯ\left(4\right)\)

\(\Rightarrow\sqrt{x}-3\in\left\{-1;1;-2;2;-4;4\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{2;4;1;5;-1;7\right\}\) 

=> x thuộc {4;16;1;25;1;49}

20 tháng 8 2017

Ta có:\(A=\frac{\sqrt{x}+1}{\sqrt{x}+3}\left(ĐKXĐ:x\ge0\right)=\frac{\sqrt{x}+3-2}{\sqrt{x}+3}=1-\frac{2}{\sqrt{x}+3}\)

                 Để A nguyên thì \(2⋮\left(\sqrt{x}+3\right)\). Hay \(\sqrt{x}+3\inƯ\left(2\right)\)

                           Ư (2) là:[1,-1,2,-2]

              Do đó ta có bảng sau:

\(\sqrt{x}+3\)-2-112
\(\sqrt{x}\)-5-4-2-1
xko TMko TMko TMko TM

        Vậy PT ko thể nguyên

     

       

20 tháng 8 2017

cảm ơn anh nhé

25 tháng 11 2019

Ta có:

A = \(\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\left(\sqrt{x}-3\right)+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)

Để A \(\in\)Z <=> 4 \(⋮\)\(\sqrt{x}-3\)

<=> \(\sqrt{x}-3\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)

<=>\(\sqrt{x}\in\left\{4;2;5;1;7;-1\right\}\)

Do \(\sqrt{x}\ge0\) => \(\sqrt{x}\in\left\{4;2;5;1;7\right\}\)

=> \(x\in\left\{16;4;25;1;49\right\}\)

Vậy ...

\(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1\)\(+\frac{4}{\sqrt{x}-3}\)

ĐKXĐ: \(x\in R\)

Vì \(x\in Z \Rightarrow \sqrt{x}-3\in Z\)

Để A là một số nguyên <=>  \(\frac{4}{\sqrt{x}-3}\in Z\)

                                     <=>  \(4⋮\sqrt{x}-3\)

                                     <=> \(\sqrt{x}-3\inƯ\left(4\right)=\left\{1,2,4,-1,-2,-4\right\}\)mà \(\sqrt{x}-3\ge-3\forall x\)

                                     <=>\(\sqrt{x}\in\left\{4;5;7;2;1\right\}\)

                                      <=> \(x\in\left\{16;25;49;4;1\right\}\)

AH
Akai Haruma
Giáo viên
31 tháng 10 2023

Lời giải:

$M=\frac{2(\sqrt{x}-3)+7}{\sqrt{x}-3}=2+\frac{7}{\sqrt{x}-3}$

Để $M$ nguyên thì $\frac{7}{\sqrt{x}-3}$

Với $x$ nguyên không âm thì điều này xảy ra khi mà $\sqrt{x}-3$ là ước của $7$

$\Rightarrow \sqrt{x}-3\in\left\{\pm 1; \pm 7\right\}$

$\Rightarrow \sqrt{x}\in \left\{4; 2; 10; -4\right\}$

Vì $\sqrt{x}\geq 0$ nên $\sqrt{x}\in \left\{4; 2; 10\right\}$

$\Rightarrow x\in \left\{16; 4; 100\right\}$ (tm)

9 tháng 3 2017

Ta có : A=\(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)=    \(\frac{\sqrt{x}-3+4}{\sqrt{x}-3}\)  =      1+\(\frac{4}{\sqrt{x}-3}\)                                                                                                                        Để A có giá trị nguyên thi \(\sqrt{x}-3\)là ước của 4                                                                                                                                           \(\sqrt{x}-3\)= +-1;+-2;+-4                                                                                                                                                                                      Nếu \(\sqrt{x}-3\)=1 suy ra x=16                                                                                                                                                                      Nếu\(\sqrt{x}-3\)=-1 suy ra x=4                                                                                                                                                                        Nếu\(\sqrt{x}-3\)= 2 suy ra  x=25                                                                                                                                                                      Nếu \(\sqrt{x}-3\)=-2 suy ra x=1                                                                                                                                                                        Nếu \(\sqrt{x}-3\)=4 suy ra x=49                                                                                                                                                                      Neu  \(\sqrt{x}-3\)=-4 suy ra \(\sqrt{x}\)=-1 (loại)                                                                                                                    Vậy x=.......                                                                                                                                                                                                               Bạn thử cách này xem sao nhé mình cũng chưa thử cách này bao giờ