Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn cứ giải như bình thường thôi. Không việc gì phải đoán mò cả!
\(A=\frac{\left(x-1\right)^2}{x^2-4x+3}=\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x-3\right)}< 1\)
\(\Leftrightarrow\left(x-1\right)^2< \left(x-1\right)\left(x-3\right)\)
\(\Leftrightarrow2\left(x-1\right)< 0\)
\(\Leftrightarrow x< 1\)
Vậy tập nghiệm của bất phương trình là \(S=\left\{x< 3\right\}\)
\(ĐKXĐ:x\ne1;x\ne3\)
để \(A< 1\) thì \(\frac{\left(x-1\right)^2}{x^2-4x+3}< 1\Leftrightarrow\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x-3\right)}-1< 0\)
\(\Leftrightarrow\frac{x-1}{x-3}-\frac{x-3}{x-3}< 0\)
\(\Leftrightarrow\frac{x-1-x+3}{x-3}< 0\)
\(\Leftrightarrow\frac{2}{x-3}< 0\)
\(\Rightarrow x-3< 0\) vì \(2>0\)
\(\Rightarrow x< 3\)
kết hợp với \(ĐKXĐ:x\ne1;x\ne3\) ta có \(\hept{\begin{cases}x< 3\\x\ne1\end{cases}}\) thì \(A< 1\)
a: \(P=\left(\dfrac{-\left(x+3\right)}{x-3}+\dfrac{x-3}{x+3}+\dfrac{4x^2}{x^2-9}\right):\dfrac{2x+1-x-3}{x+3}\)
\(=\dfrac{-x^2-6x-9+x^2-6x+9+4x^2}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x-2}\)
\(=\dfrac{4x^2-12x}{x-3}\cdot\dfrac{1}{x-2}=\dfrac{4x}{x-2}\)
b: \(2x^2-5x+2=0\)
=>(x-2)(2x-1)=0
=>x=1/2
Thay x=1/2 vào P, ta được:
\(P=\left(4\cdot\dfrac{1}{2}\right):\left(\dfrac{1}{2}-2\right)=2:\dfrac{-3}{2}=\dfrac{-4}{3}\)
a) C được xác định <=> x khác +- 2
b) Ta có : \(C=\dfrac{x^3}{\left(x-2\right)\left(x+2\right)}-\dfrac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^3-x^2-2x-2x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2\left(x-1\right)-4\left(x-1\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(x-1\right)\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=x-1\)
Để C = 0 thì x - 1 = 0 <=> x = 1 (tm)
c) Để C nhận giá trị dương thì x - 1 > 0 <=> x > 1
Kết hợp với ĐK => Với x > 1 và x khác 2 thì C nhận giá trị dương