\(\frac{(x-1)^2} {x^2-4x+3} \). Tìm x để A<1

Mình đoán mò thì ra...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2018

Bạn cứ giải như bình thường thôi. Không việc gì phải đoán mò cả!

\(A=\frac{\left(x-1\right)^2}{x^2-4x+3}=\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x-3\right)}< 1\)

\(\Leftrightarrow\left(x-1\right)^2< \left(x-1\right)\left(x-3\right)\)

\(\Leftrightarrow2\left(x-1\right)< 0\)

\(\Leftrightarrow x< 1\)

Vậy tập nghiệm của bất phương trình là \(S=\left\{x< 3\right\}\)

26 tháng 5 2018

\(ĐKXĐ:x\ne1;x\ne3\)

để \(A< 1\)  thì  \(\frac{\left(x-1\right)^2}{x^2-4x+3}< 1\Leftrightarrow\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x-3\right)}-1< 0\)    

\(\Leftrightarrow\frac{x-1}{x-3}-\frac{x-3}{x-3}< 0\)

\(\Leftrightarrow\frac{x-1-x+3}{x-3}< 0\)

\(\Leftrightarrow\frac{2}{x-3}< 0\)

\(\Rightarrow x-3< 0\)  vì \(2>0\)

\(\Rightarrow x< 3\)

kết hợp với \(ĐKXĐ:x\ne1;x\ne3\) ta có  \(\hept{\begin{cases}x< 3\\x\ne1\end{cases}}\)   thì \(A< 1\)

15 tháng 8 2019

Thực hiện phép chia ta có:

Ta có: \(x^3-2x^2+7x-7=\left(x^2+3\right)\left(x-2\right)+4x-1\)

\(x^3-2x^2+7x-7\) chia hết cho \(x^2+3\)

=> \(4x-1⋮x^2+3\) (1)

=> \(4x^2-x=x\left(4x-1\right)⋮x^2+3\)

Mà: \(4x^2+12=4\left(x^2+3\right)⋮x^2+3\)

=> \(\left(4x^2-x\right)-\left(4x^2+12\right)⋮x^2+3\)

=> \(-x-12⋮x^2+3\)

=> \(x+12⋮x^2+3\)

=> \(4x+48⋮x^2+3\) (2)

Từ (1); (2) => \(\left(4x+48\right)-\left(4x-1\right)⋮x^2+3\)

=> \(49⋮x^2+3\)

=> \(x^2+3\in\left\{\pm1;\pm7;\pm49\right\}\) vì \(x^2+3\ge3\) với mọi x

=> \(\begin{cases}x^2+3=7\\x^2+3=49\end{cases}\Rightarrow\orbr{\begin{cases}x^2=4\\x^2=46\left(loại\right)\end{cases}}\)

Với \(x^2=4\Rightarrow x=\pm2\) thử vào bài toán x=-2 loại. x=2 thỏa mãn

Vậy x=2

15 tháng 8 2019

Em cảm ơn cô

16 tháng 4 2017

tk ủng hộ nha mọi người

16 tháng 4 2017

x = 4

Tk mình nha!!!>.<

9 tháng 10 2019

\(2\left(x^2+8x+16\right)-x^2+4=0\)

\(\Leftrightarrow2x^2+16x+32-x^2+4=0\)

\(\Leftrightarrow x^2+16x+36=0\)

\(\Leftrightarrow x^2+16x+64=28\)

\(\Leftrightarrow\left(x+8\right)^2=28\)

\(\Leftrightarrow\orbr{\begin{cases}x_1=\sqrt{28}-8\\x_2=-\sqrt{28}-8\end{cases}}\)

\(2\left(x^2+8x+16\right)-x^2+4=0\)

\(2x^2+16x+32-x^2+4=0\)

\(x^2+16x+36=0\)

\(x^2+16x+64=28\)

\(\left(x+8\right)^2=28\)

bình phương thì chia lm 2 trường hợp 

lm tiếp phần sau 

17 tháng 1 2018

Ta có: \(x^4-30x^2+31x-30=0\) \(\Rightarrow x^4+x-30x^2+30x-30=0\)

\(\Rightarrow x\left(x^3+1\right)-30\left(x^2-x+1\right)=0\)

\(\Rightarrow x\left(x+1\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)=0\)

\(\Rightarrow\left(x^2-x+1\right)\left(x^2+x-30\right)=0\)

Xét \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)

\(\Rightarrow x^2+x-30=0\Rightarrow x^2-5x+6x-30=0\)

\(\Rightarrow\left(x-5\right)\left(x+6\right)=0\Rightarrow\orbr{\begin{cases}x-5=0\\x+6=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=-6\end{cases}}}\)

Vậy x=5 hoặc x = -6

\(\Leftrightarrow x^4-5x^3+5x^3-25x^3-5x^3+25x+6x-30=0\)

\(\Leftrightarrow\left(x-5\right)\left(x^3+5x^2-5x+6\right)=0\)

\(\Leftrightarrow\left(x-5\right)\cdot\left(x^3+6x^2-x^2-6x+x+6\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+6\right)\left(x^2-x+1\right)=0\)

hay \(x\in\left\{5;-6\right\}\)

1 tháng 3 2017

tiếp nè

2c) x4-4x3+4x2-x2-2x-1=0 ra hằng đẳng thức r nhé

1 tháng 3 2017

2

a) x2(x2-3)=4x+3

<=> x4-3x2-4x-3=0

<=>x4-2x2+1-x2-4x-4=0

ra hằng đẳng thức rồi đó bạn, tự giải típ

b, x3(x+1)=5(5-2x)-x3

<=>x4+x3-25+10x+x3=0

<=>x4+2x3+x2-x2+10x-25=0

ra hằng đẳng thức r nhé

6 tháng 3 2020

Bài 1 :

\(\frac{x^3-9x}{15-5x}=\frac{-x^2-3x}{5}\left(ĐKXĐ:x\ne3\right)\)

\(\Leftrightarrow5\left(x^3-9x\right)=-\left(x^2+3x\right)\left(15-5x\right)\)

\(\Leftrightarrow5x^3-45x=5x^3-45\) ( luôn đúng )

Do đó : \(\frac{x^3-9x}{15-5x}=\frac{-x^2-3x}{5}\left(x\ne3\right)\)

P/s : Bài này thì xét tích chéo của hai số thôi nhé @

31 tháng 3 2020

a, Ta có : \(\frac{x+1}{2}+\frac{x-2}{4}=1-\frac{2\left(x-1\right)}{3}\)

=> \(\frac{6\left(x+1\right)}{12}+\frac{3\left(x-2\right)}{12}=\frac{12}{12}-\frac{8\left(x-1\right)}{12}\)

=> \(6\left(x+1\right)+3\left(x-2\right)=12-8\left(x-1\right)\)

=> \(6x+6+3x-6=12-8x+8\)

=> \(17x=20\)

=> \(x=\frac{20}{17}\)

b, Ta có : \(\frac{5x-1}{6}+x=\frac{6-x}{4}\)

=> \(\frac{5x-1+6x}{6}=\frac{6-x}{4}\)

=> \(4\left(11x-1\right)=6\left(6-x\right)\)

=> \(44x-4-36+6x=0\)

=> \(\)\(50x=40\)

=> \(x=\frac{4}{5}\)

c, Ta có : \(\frac{5\left(1-2x\right)}{3}+\frac{x}{2}=\frac{3\left(x-5\right)}{4}-2\)

=> \(\frac{20\left(1-2x\right)}{12}+\frac{6x}{12}=\frac{9\left(x-5\right)}{12}-\frac{24}{12}\)

=> \(20\left(1-2x\right)+6x=9\left(x-5\right)-24\)

=> \(20-40x+6x-9x+45+24=0\)

=> \(43x=89\)

=> \(x=\frac{89}{43}\)