Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)
\(\Rightarrow A=\left(\dfrac{x-2\left(x+2\right)+1\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right):\left(\dfrac{\left(x-2\right)\left(x+2\right)+10-x^2}{x+2}\right)\)
\(\Rightarrow A=\left(\dfrac{-6}{x^2-4}\right):\left(\dfrac{6}{x+2}\right)\)
\(\Rightarrow A=-\dfrac{6}{x^2-4}.\dfrac{x+2}{6}=-\dfrac{6\left(x+2\right)}{\left(x-2\right)\left(x+2\right)6}=-\dfrac{1}{x-2}\)
để A<0 thì :
\(\left\{{}\begin{matrix}x-2\ne0\\x-2\notin Z-\end{matrix}\right.\)\(\Leftrightarrow x\in\left\{3;4;5;6;7;8;9;....n\right\}\)
( Z- là tập hợp số nguyên âm )
Để A có giá trị nguyên thì :
\(\left\{{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
Lời giải:
ĐKXĐ: $x\neq \pm 2$
\(A=\left[\frac{x}{(x-2)(x+2)}-\frac{2(x+2)}{(x-2)(x+2)}+\frac{x-2}{(x+2)(x-2)}\right]:\frac{x^2-4+10-x^2}{x+2}\\ =\frac{x-2(x+2)+x-2}{(x-2)(x+2)}:\frac{6}{x+2}\\ =\frac{-6}{(x-2)(x+2)}.\frac{x+2}{6}\\ =\frac{-1}{x-2}=\frac{1}{2-x}\)
Để $A<0\Leftrightarrow \frac{1}{2-x}<0$
$\Leftrightarrow 2-x<0\Leftrightarrow x>2$
Kết hợp với ĐKXĐ suy ra $x>2$
b.
Với $x$ nguyên, để $A$ nguyên thì $1\vdots 2-x$
$\Rightarrow 2-x=1$ hoặc $2-x=-1$
$\Rightarrow x=1$ hoặc $x=3$
a) ĐKXĐ: x∉{2;-2}
b) Ta có: \(A=\dfrac{x}{x-2}+\dfrac{2-x}{x+2}+\dfrac{12-10x}{x^2-4}\)
\(=\dfrac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}+\dfrac{12-10x}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^2+2x-x^2+4x-4+12-10x}{\left(x+2\right)\left(x-2\right)}\)
\(=\dfrac{-4x+8}{\left(x+2\right)\left(x-2\right)}\)
\(=\dfrac{-4\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}\)
\(=\dfrac{-4}{x+2}\)
c) Để \(A=\dfrac{2}{3}\) thì \(\dfrac{-4}{x+2}=\dfrac{2}{3}\)
\(\Leftrightarrow x+2=\dfrac{-4\cdot3}{2}=-\dfrac{12}{2}=-6\)
hay x=-6-2=-8(nhận)
Vậy: Để \(A=\dfrac{2}{3}\) thì x=-8
d) Để A nguyên thì \(-4⋮x+2\)
\(\Leftrightarrow x+2\inƯ\left(-4\right)\)
\(\Leftrightarrow x+2\in\left\{1;-1;2;-2;4;-4\right\}\)
\(\Leftrightarrow x\in\left\{-1;-3;0;-4;2;-6\right\}\)(nhận)
Vậy: Để A nguyên thì \(x\in\left\{-1;-3;0;-4;2;-6\right\}\)
a: \(A=\dfrac{x^2-5x+6-x^2+x+2x^2-6}{x\left(x-3\right)}=\dfrac{2x^2-4x}{x\left(x-3\right)}=\dfrac{2x}{x-3}\)
a, ĐKXĐ:\(\left\{{}\begin{matrix}x+3\ne0\\x^2+x-6\ne0\\2-x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-3\\x^2+x-6\ne0\\x\ne2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-3\\x\ne2\end{matrix}\right.\)
b, \(A=\dfrac{x+2}{x+3}-\dfrac{5}{x^2+x-6}+\dfrac{1}{2-x}\)
\(=\dfrac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+3\right)}-\dfrac{5}{\left(x-2\right)\left(x+3\right)}-\dfrac{x+3}{\left(x-2\right)\left(x+3\right)}\)
\(=\dfrac{x^2-4-5-x-3}{\left(x-2\right)\left(x+3\right)}\)
\(=\dfrac{x^2-x-12}{\left(x-2\right)\left(x+3\right)}\)
\(=\dfrac{\left(x-4\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}\)
\(=\dfrac{x-4}{x-2}\)
\(c,A=\dfrac{-3}{4}\\ \Leftrightarrow\dfrac{x-4}{x-2}=\dfrac{-3}{4}\\ \Leftrightarrow4\left(x-4\right)=-3\left(x-2\right)\\ \Leftrightarrow4x-16x=-3x+6\\ \Leftrightarrow4x-16x+3x-6=0\\ \Leftrightarrow7x-22=0\\ \Leftrightarrow x=\dfrac{22}{7}\)
d, \(A=\dfrac{x-4}{x-2}=\dfrac{x-2-2}{x-2}=1-\dfrac{2}{x-2}\)
Để \(A\in Z\Rightarrow\dfrac{2}{x-2}\in Z\Rightarrow x-2\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
Ta có bảng:
x-2 | -2 | -1 | 1 | 2 |
x | 0 | 1 | 3 | 4 |
Vậy \(x\in\left\{0;1;3;4\right\}\)
ĐK: \(2+x\ne0\Leftrightarrow x\ne-2\)
A nguyên dương \(\Leftrightarrow-\dfrac{4}{2+x}>0\)
Mà -4<0 nên để A>0 thì 2+x<0 <=> x<-2
Vậy khi x<-2 thì A nguyên dương.
Để `A in N**`
`=>A>0,A in N`
`A>0`
`=>-4/(x+2)>0`
`=>x+2<0`
`=>x<-2`
`A in N`
`=>-4 vdots x+2`
`=>x+2 in Ư(4)={+-1,+-2,+-4}`
`=>x in {-3,-1,0,-4,-6,2}`
Mà `x<-1`
`=>x in {-3,-,4,-6}`