Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a; \(\dfrac{x}{3}\) = \(\dfrac{4}{y}\)
\(xy\) = 12
12 = 22.3; Ư(12) = {-12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6;12}
Lập bảng ta có:
\(x\) | -12 | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | 12 |
y | -1 | -2 | -3 | -4 | -6 | -12 | 12 | 6 | 4 | 3 | 2 | 1 |
Theo bảng trên ta có các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x\)\(;y\)) =(-12; -1);(-6; -2);(-4; -3);(-2; -6);(-1; 12);(1; 12);(2;6);(3;4);(4;3);(6;2);(12;1)
b; \(\dfrac{x}{y}\) = \(\dfrac{2}{7}\)
\(x\) = \(\dfrac{2}{7}\).y
\(x\) \(\in\)z ⇔ y ⋮ 7
y = 7k;
\(x\) = 2k
Vậy \(\left\{{}\begin{matrix}x=2k\\y=7k;k\in z\end{matrix}\right.\)
a) Để \(\left(x+1\right)\left(x+5\right)>0\) thì x + 1 và x + 5 đồng dấu.
Ta có 2 trường hợp:
TH1:\(\hept{\begin{cases}x+1>0\\x+5>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>-1\\x>-5\end{cases}}\Leftrightarrow x>-1\)
TH2: \(\hept{\begin{cases}x+1< 0\\x+5< 0\end{cases}\Leftrightarrow}\hept{\begin{cases}x< -1\\x< -5\end{cases}}\Leftrightarrow x< -5\)
Vậy x > -1 hoặc x < -5
b) \(x\left(x-3\right)\le0\)
+)Xét x(x - 3) = 0.
Ta có: \(x\left(x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\) (1)
+)Xét \(x\left(x-3\right)< 0\) thì x và x - 3 trái dấu.Xét 2 TH:
TH1: \(\hept{\begin{cases}x>0\\x-3< 0\end{cases}\Leftrightarrow}\hept{\begin{cases}x>0\\x< 3\end{cases}}\Leftrightarrow0< x< 3\) (2)
TH2: \(\hept{\begin{cases}x< 0\\x-3>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 0\\x>3\end{cases}}\) (loại)
Kết hợp (1) và (2) ta được: \(0\le x\le3\)
Bài 1: a) Do (3-2x)2 \(\ge0\) và (y-5)20 \(\ge0\)
mà (3-2x)2+(y-5)20\(\le0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(3-2x\right)^2=0\\\left(y-5\right)^{20}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3-2x=0\\y-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=3-0=3\\y=0+5=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3}{2}\\y=5\end{matrix}\right.\)
Vậy: \(x=\frac{3}{2};y=5\)
c) x là các số nguyên hả bạn?
Do (x-3).(x-4)\(\le0\)
\(\Rightarrow\) Có hai trường hợp:
TH1: (x-3)(x-4)=0
Trong hai số (x-3) và (x-4) có một số bằng 0.
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x-4=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0+3=3\\x=0+4=4\end{matrix}\right.\)
TH2: (x-3)(x-4)<0
Trong hai số x-3 và x-4 có một số là số nguyên dương, 1 số là số nguyên âm.
mà x-4<x-3 \(\Rightarrow\) x-4 là số nguyên âm ( x-4<0) \(\Leftrightarrow\) x<4 (1)
x-3 là số nguyên dương (x-3>0) \(\Rightarrow x>3\) (2)
Từ (1) và (2) \(\Rightarrow\) 3<x<4 mà x là các số nguyên nên x ko tm
Vậy: x\(\in\left\{3;4\right\}\)
Bài 2:
c) (x-12).(y+5)=7=1.7=7.1=-1.-7=-7.-1
\(\Rightarrow\) \(\left[{}\begin{matrix}x-12=1;y+5=7\\x-12=7;y+5=1\\x-12=-1;y+5=-7\\x-12=-7;y+5=-1\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=13;y=2\\x=19;y=-4\\x=11;y=-12\\x=5;y=-6\end{matrix}\right.\)
Vậy:...
\(\left(\frac{x+2015}{2014}-1\right)+\left(\frac{x+2015}{2013}-1\right)+\left(\frac{x+2015}{2012}-1\right)=3\left(\frac{x+2015}{2011}-1\right)\)
\(\frac{x+2015}{2014}+\frac{x+2015}{2013}+\frac{x+2015}{2012}=\frac{3\left(x+2015\right)}{2011}\)
\(\frac{x+2015}{2014}+\frac{x+2015}{2013}+\frac{x+2015}{2012}-\frac{x+2015}{2011}+\frac{x+2015}{2011}+\frac{x+2015}{2011}=0\)
\(\left(x+2015\right)\left(\frac{1}{2014}+\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2011}+\frac{1}{2011}+\frac{1}{2011}\right)=0\)
\(x+2015=0\text{ Vì }\frac{1}{2014}+\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2011}+\frac{1}{2011}+\frac{1}{2011}\ne0\)
\(x=-2015\)
\(\left(x-1\right)^2=4\)
\(\Rightarrow\orbr{\begin{cases}x-1=-2\\x-1=2\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}}\)
\(\left(x+1\right)\left(x-1\right)\le0\)
\(\Rightarrow x^2-1\le0\)
\(\Rightarrow x^2\le1\)
\(\Rightarrow x\le1\)
\(\left(x-1\right)^2=4\)
\(\Rightarrow\left(x-1\right)^2=2^2\)
\(\Rightarrow x-1=2\)
\(\Rightarrow x=2+1\)
\(\Rightarrow x=3\)