![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1 :
\(B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2019^2}\)
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
................
\(\frac{1}{2019^2}< \frac{1}{2018.2019}\)
\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{2018.2019}\)
\(\Rightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2018}-\frac{1}{2019}\)
\(\Rightarrow B< 1-\frac{1}{2019}< 1\)
\(\Rightarrow B< 1\)
#)Giải :
Bài 3 :
Gọi số cần tìm là x
Theo đầu bài, ta có :
x : 11 dư 6 => x - 6 chia hết cho 11 => n - 6 + 33 = x + 27 chia hết cho 11
x : 4 dư 1 => x - 1 chia hết cho 4 => n - 1 + 28 = n + 27 chia hết cho 4
x : 19 dư 11 => x - 11 chia hết cho 19 => x - 11 + 38 = x + 27 chia hết cho 19
Vì x + 27 chia hết cho 11,4 và 19 => x + 27 = BCNN( 11,4,19 ) = 836
=> x = 836 - 27 = 809
Vậy số cần tìm là 809
![](https://rs.olm.vn/images/avt/0.png?1311)
1. Ta có: A = 30 + 31 + 32 + ... + 3100
3A = 3.(1 + 3 + 32 + ... + 3100)
3A = 3 + 32 + 33 + ... + 3101
3A - A = (3 + 32 + 33 + ... + 3101) - (1 + 3 + 32 + ... + 3100)
2A = 3101 - 1
A = \(\frac{3^{101}-1}{2}\)
Vậy ...
Baif1 :
đặt \(A=3^0+3^1+3^2+...+3^{100}\)
\(\Rightarrow3A=3+3^2+3^3+...+3^{101}\)
\(\Rightarrow3A-A=\left(3+3^2+...+3^{101}\right)-\left(1+3+...+3^{100}\right)\)
\(\Rightarrow2A=3^{101}-1\)
\(\Rightarrow A=\frac{3^{101}-1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
p là snt nên p chỉ có 2 ước là 1 và chính nó
th1 n-2=1 =. n=3
Thay n=3 vào n2+n-1=11, là snt, thỏa mãn
th2 n2+n-1=1
n(n+1)=2 =>n=1
Thya n=1 vào n2+n-1=1, ko là snt
Vậy n=3
Ủng hộ mk nha
![](https://rs.olm.vn/images/avt/0.png?1311)
1,
Đặt A = n3 - n2 + n - 1
Ta có A = n2(n - 1) + (n - 1) = (n - 1)(n2 + 1)
Vì A nguyên tố nên A chỉ có 2 Ư. Ư thứ 1 là 1 còn Ư thứ 2 nguyên tố nên ta suy ra 2 trường hợp :
TH1 : n - 1 = 1 và n2 + 1 nguyên tố
⇒
n = 2 và n2 + 1 = 5 nguyên tố (thỏa)
TH2 : n2 + 1 = 1 và n - 1 nguyên tố
⇒
n = 0 và n - 1 = - 1( ko thỏa)
Vậy n = 2
2 ,
Xột số A = (2n – 1)2n(2n + 1)
A là tích của 3 số tự nhiên liờn tiệp nên A ⋮ 3
Mặt khỏc 2n – 1 là số nguyên tố ( theo giả thiết )
2n không chia hết cho 3
Vậy 2n + 1 phải chia hết cho 3 ⇒ 2n + 1 là hợp số.
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : S = 1 + 3 + 32 + 33 + ...... + 32015
=> 3S = 3 + 32 + 33 + ...... + 32016
=> 3S - S = 32016 - 1
=> 2S = 32016 - 1
=> 2S + 1 = 32016
Vậy 2S + 1 là luỹ thừa của 1 số tự nhiên (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
a: \(\Leftrightarrow y^{2010}-y^{2008}=0\)
\(\Leftrightarrow y\left(y-1\right)\left(y+1\right)=0\)
hay \(y\in\left\{0;1;-1\right\}\)
b: \(\Leftrightarrow2^{y-1}\cdot\left(2^{y-1}-1\right)=0\)
\(\Leftrightarrow y-1=0\)
hay y=1
Bài 2:
\(\Leftrightarrow3^5\ge3^n\ge3^5\)
hay n=5
Đề kiểu gì kì
vậy pạn
sao làm