Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=0,6+\left|\dfrac{1}{2}-x\right|\\ Vì:\left|\dfrac{1}{2}-x\right|\ge\forall0x\in R\\ Nên:A=0,6+\left|\dfrac{1}{2}-x\right|\ge0,6\forall x\in R\\ Vậy:min_A=0,6\Leftrightarrow\left(\dfrac{1}{2}-x\right)=0\Leftrightarrow x=\dfrac{1}{2}\)
\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\\ Vì:\left|2x+\dfrac{2}{3}\right|\ge0\forall x\in R\\ Nên:B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\forall x\in R\\ Vậy:max_B=\dfrac{2}{3}\Leftrightarrow\left|2x+\dfrac{2}{3}\right|=0\Leftrightarrow x=-\dfrac{1}{3}\)
a ) \(A=0,6+\left|\dfrac{1}{2}-x\right|\)
Ta có : \(\left|\dfrac{1}{2}-x\right|\ge0\)
\(\Leftrightarrow0,6+\left|\dfrac{1}{2}-x\right|\ge0,6\)
Vậy GTNN là 0,6 khi \(x=\dfrac{1}{2}.\)
- Đề ghi ko hiểu ?
b ) \(\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\)
Ta có : \(\left|2x+\dfrac{2}{3}\right|\ge0\)
\(\Leftrightarrow\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\)
Vậy GTNN là \(\dfrac{2}{3}\Leftrightarrow x=-\dfrac{1}{3}\)
\(A=0,6+\left|\dfrac{1}{2}-x\right|\)
\(\left|\dfrac{1}{2}-x\right|\ge0\forall x\in R\)
\(A=0,6+\left|\dfrac{1}{2}-x\right|\ge0,6\)
Dấu "=" xảy ra khi:
\(\left|\dfrac{1}{2}-x\right|=0\Rightarrow x=\dfrac{1}{2}\)
\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\)
\(\left|2x+\dfrac{2}{3}\right|\ge0\forall x\in R\)
\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\)
Dấu "=" xảy ra khi:
\(\left|2x+\dfrac{2}{3}\right|=0\Leftrightarrow2x=-\dfrac{2}{3}\Leftrightarrow x=-\dfrac{1}{3}\)
a) Ta có: \(\left(2x-1\right)^2\ge0\forall x\)
\(\Rightarrow-3\left(2x-1\right)^2\le0\forall x\)
\(\Rightarrow-3\left(2x-1\right)^2+5\le5\forall x\)
Dấu '=' xảy ra khi 2x-1=0
\(\Leftrightarrow2x=1\)
hay \(x=\dfrac{1}{2}\)
Vậy: Giá trị lớn nhất của biểu thức \(A=5-3\left(2x-1\right)^2\) là 5 khi \(x=\dfrac{1}{2}\)
\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\)
Vì \(\left|2x+\dfrac{2}{3}\right|\ge0\Rightarrow\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\)
=> MaxB=2/3 => 2x+2/3=0 <=> x=-1/3
Vậy MaxB=2/3 khi x=-1/3
\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\)
\(\text{Ta có : }\left|2x+\dfrac{2}{3}\right|\ge0\text{ }\forall\text{ }x\\ \Rightarrow B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\)
\(\text{Dấu "=" xảy ra khi : }\left|2x+\dfrac{2}{3}\right|=0\\ \Leftrightarrow2x+\dfrac{2}{3}=0\\ \Leftrightarrow2x=-\dfrac{2}{3}\\ \Leftrightarrow x=-\dfrac{1}{3}\)
Vậy \(x=-\dfrac{1}{3}\)
\(A=\left|\dfrac{3}{5}-x\right|+\dfrac{1}{9}\ge\dfrac{1}{9}\\ A_{min}=\dfrac{1}{9}\Leftrightarrow x=\dfrac{3}{5}\\ B=\dfrac{2009}{2008}-\left|x-\dfrac{3}{5}\right|\le\dfrac{2009}{2008}\\ B_{max}=\dfrac{2009}{2008}\Leftrightarrow x=\dfrac{3}{5}\\ C=-2\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\le1\dfrac{2}{3}\\ C_{max}=1\dfrac{2}{3}\Leftrightarrow\dfrac{1}{3}x=-4\Leftrightarrow x=-12\)
x =1,5 thì phải