K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
TT
1
22 tháng 10 2020
đặt y = 1/x suy ra y <=1,
ta có P = 1 -2y+2016y^2
Tự làm tiếp nhé
12 tháng 1 2017
\(B+1=\frac{4x+3+x^2+1}{x^2+1}=\frac{\left(x+2\right)^2}{x^2+1}\ge0\Rightarrow B\ge-1\\ \)
GTNN B=-1 khi x=-2
R
7
LN
10 tháng 6 2019
a. \(x^2+2x+1=\left(x+1\right)^2\ge0\)
b. \(x^2-2x+1=\left(x-1\right)^2\ge0\)
10 tháng 6 2019
a. x2+2x+1=(x+1)2\(\ge\)0
Dấu"=" xảy ra khi x=-1
b. x2−2x+1 =(x-1)2\(\ge\)0
Dấu"=" xảy ra khi x=1
LN
cho x,y thỏa mãn:
2x\(^2\)+\(\frac{1}{x^2}\)+\(\frac{y^2}{4}\)=4
tìm giá trị nhỏ nhất của P=xy
0
\(B=\frac{x^2-2x+2018}{x^2}\)
\(\Rightarrow B=\frac{x^2}{x^2}-\frac{2x}{x^2}+\frac{2018}{x^2}\)
\(\Rightarrow B=1-\left(\frac{2}{x}-\frac{2018}{x^2}\right)\)
\(B=\frac{x^2-2x+2018}{x ^2}\)
\(\Rightarrow\)\(Bx^2=x^2-2x+2018\)
\(\Rightarrow\)\(\left(B-1\right)x^2+2x-2018=0\)
Để phương trình có nghiệm thì:
\(\Delta'=1-\left(B-1\right).\left(-2018\right)\)\(\ge0\)
\(\Leftrightarrow\)\(2018B-2017\ge0\)
\(\Leftrightarrow\) \(B\ge\frac{2017}{2018}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=\frac{-1}{B-1}=\frac{-1}{\frac{2017}{2018}-1}=2018\)
Vậy \(Min\)\(B=\frac{2017}{2018}\) \(\Leftrightarrow\)\(x=2018\)
p/s: tham khảo