\(x^2+2x+1\)

b. \(x^2...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2019

a. \(x^2+2x+1=\left(x+1\right)^2\ge0\)

b. \(x^2-2x+1=\left(x-1\right)^2\ge0\)

a. x2+2x+1=(x+1)2\(\ge\)0

Dấu"=" xảy ra khi x=-1

b. x2−2x+1 =(x-1)2\(\ge\)0

Dấu"=" xảy ra khi x=1

22 tháng 10 2020

đặt y = 1/x suy ra y <=1,

ta có P = 1 -2y+2016y^2 

Tự làm tiếp nhé

31 tháng 12 2016

A=\(A=\frac{1}{x^2}+\frac{1}{y^2}=\frac{x^2+y^2}{\left(xy\right)^2}=\frac{20}{\left(xy\right)^2}\) (1)

\(\left(x-y\right)^2\ge0\Rightarrow x^2+y^2\ge2xy\Rightarrow xy\le\frac{x^2+y^2}{2}=\frac{20}{2}=10\)(2)

từ (1) và (2) => \(A\ge\frac{20}{10^2}=\frac{1}{5}\)

31 tháng 12 2016

cảm ơn nhiều.

TXĐ: D=[-2,2]

P'=\(1-\frac{x}{\sqrt{4-x^2}}\)

P'=0<=> \(1-\frac{x}{\sqrt{4-x^2}}=0\)=>\(\hept{\begin{cases}x=\sqrt{4-x^2}\\4-x^2>0\end{cases}}\)

\(\hept{\begin{cases}x^2=4-x^2\\x\ge0\\-2< x< 2\end{cases}}\)

=> \(x=\sqrt{2}\)

P(-2)=-2

\(P\left(\sqrt{2}\right)=2\sqrt{2}\)

P(2)=2

Vậy GTLN của P=\(2\sqrt{2}\),GTNN là -2

23 tháng 10 2015

Vì \(x^2\ge0\)

Mà x2\(\ne\)

=> Để \(x^2+\frac{1}{x^2}+3\)nho nhat => x2=1+ .x= -1;1

=> \(x^2+\frac{1}{x^2}+3\)=1+1/1+3=1+1+3=5

=> Min \(x^2+\frac{1}{x^2}+3=5\)

4 tháng 5 2018

\(B=\frac{x^2-2x+2018}{x^2}\)

\(\Rightarrow B=\frac{x^2}{x^2}-\frac{2x}{x^2}+\frac{2018}{x^2}\)

\(\Rightarrow B=1-\left(\frac{2}{x}-\frac{2018}{x^2}\right)\)

5 tháng 5 2018

         \(B=\frac{x^2-2x+2018}{x ^2}\)

\(\Rightarrow\)\(Bx^2=x^2-2x+2018\)

\(\Rightarrow\)\(\left(B-1\right)x^2+2x-2018=0\)   

Để phương trình có nghiệm thì:

      \(\Delta'=1-\left(B-1\right).\left(-2018\right)\)\(\ge0\)

  \(\Leftrightarrow\)\(2018B-2017\ge0\)

  \(\Leftrightarrow\) \(B\ge\frac{2017}{2018}\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(x=\frac{-1}{B-1}=\frac{-1}{\frac{2017}{2018}-1}=2018\)

Vậy  \(Min\)\(B=\frac{2017}{2018}\) \(\Leftrightarrow\)\(x=2018\)

p/s: tham khảo

        

26 tháng 1 2016

Nhóm các số vào để tạo hằng đẳng thức đi!

12 tháng 6 2019

Đề phải là tìm GTNN chứ

12 tháng 6 2019

\(2x+x^2-10\)

\(=x^2+2x-10\)

\(=x^2+2\cdot1\cdot x+1-1+10\)

\(=\left(x+1\right)^2-1+10\)

\(=\left(x+1\right)^2+9\)

Có \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+9\ge9\)

\(\Rightarrow GTLN\left(2x+x^2-10\right)=9\)

                        với \(\left(x+1\right)^2=0;x=\left(-1\right)\)