\(x^2+\frac{1}{x^2}+3\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2015

Vì \(x^2\ge0\)

Mà x2\(\ne\)

=> Để \(x^2+\frac{1}{x^2}+3\)nho nhat => x2=1+ .x= -1;1

=> \(x^2+\frac{1}{x^2}+3\)=1+1/1+3=1+1+3=5

=> Min \(x^2+\frac{1}{x^2}+3=5\)

22 tháng 10 2020

đặt y = 1/x suy ra y <=1,

ta có P = 1 -2y+2016y^2 

Tự làm tiếp nhé

31 tháng 12 2016

A=\(A=\frac{1}{x^2}+\frac{1}{y^2}=\frac{x^2+y^2}{\left(xy\right)^2}=\frac{20}{\left(xy\right)^2}\) (1)

\(\left(x-y\right)^2\ge0\Rightarrow x^2+y^2\ge2xy\Rightarrow xy\le\frac{x^2+y^2}{2}=\frac{20}{2}=10\)(2)

từ (1) và (2) => \(A\ge\frac{20}{10^2}=\frac{1}{5}\)

31 tháng 12 2016

cảm ơn nhiều.

TXĐ: D=[-2,2]

P'=\(1-\frac{x}{\sqrt{4-x^2}}\)

P'=0<=> \(1-\frac{x}{\sqrt{4-x^2}}=0\)=>\(\hept{\begin{cases}x=\sqrt{4-x^2}\\4-x^2>0\end{cases}}\)

\(\hept{\begin{cases}x^2=4-x^2\\x\ge0\\-2< x< 2\end{cases}}\)

=> \(x=\sqrt{2}\)

P(-2)=-2

\(P\left(\sqrt{2}\right)=2\sqrt{2}\)

P(2)=2

Vậy GTLN của P=\(2\sqrt{2}\),GTNN là -2

10 tháng 6 2019

a. \(x^2+2x+1=\left(x+1\right)^2\ge0\)

b. \(x^2-2x+1=\left(x-1\right)^2\ge0\)

a. x2+2x+1=(x+1)2\(\ge\)0

Dấu"=" xảy ra khi x=-1

b. x2−2x+1 =(x-1)2\(\ge\)0

Dấu"=" xảy ra khi x=1

12 tháng 1 2017

\(B+1=\frac{4x+3+x^2+1}{x^2+1}=\frac{\left(x+2\right)^2}{x^2+1}\ge0\Rightarrow B\ge-1\\ \)

GTNN B=-1 khi x=-2

20 tháng 4 2019

Để A lớn nhất thì tử phải nhỏ nhất hay \(x^2+3x+2\) nhỏ nhất

\(x^2+3x+2=x^2+2\cdot\frac{3}{2}+\frac{9}{4}+2-\frac{9}{4}\)

                            \(=\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\)

Vì \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

Dấu "=" xảy ra khi\(x+\frac{3}{2}=0\Leftrightarrow x=-\frac{3}{2}\)

Min \(x^2+3x+2=-\frac{1}{4}\) khi x=-3/2

Vậy 

\(MaxA=\frac{2}{-\frac{1}{4}}=2\cdot\left(-4\right)=-8\)