\(A=\frac{2}{x^2+3x+2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2019

Để A lớn nhất thì tử phải nhỏ nhất hay \(x^2+3x+2\) nhỏ nhất

\(x^2+3x+2=x^2+2\cdot\frac{3}{2}+\frac{9}{4}+2-\frac{9}{4}\)

                            \(=\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\)

Vì \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

Dấu "=" xảy ra khi\(x+\frac{3}{2}=0\Leftrightarrow x=-\frac{3}{2}\)

Min \(x^2+3x+2=-\frac{1}{4}\) khi x=-3/2

Vậy 

\(MaxA=\frac{2}{-\frac{1}{4}}=2\cdot\left(-4\right)=-8\)

22 tháng 10 2020

đặt y = 1/x suy ra y <=1,

ta có P = 1 -2y+2016y^2 

Tự làm tiếp nhé

TXĐ: D=[-2,2]

P'=\(1-\frac{x}{\sqrt{4-x^2}}\)

P'=0<=> \(1-\frac{x}{\sqrt{4-x^2}}=0\)=>\(\hept{\begin{cases}x=\sqrt{4-x^2}\\4-x^2>0\end{cases}}\)

\(\hept{\begin{cases}x^2=4-x^2\\x\ge0\\-2< x< 2\end{cases}}\)

=> \(x=\sqrt{2}\)

P(-2)=-2

\(P\left(\sqrt{2}\right)=2\sqrt{2}\)

P(2)=2

Vậy GTLN của P=\(2\sqrt{2}\),GTNN là -2

24 tháng 5 2015

a)4x2-4x+3

=[(2x)2-4x+1]+2

=(2x+1)2+2 \(\ge\)2 với mọi x

Vậy GTNN của 4x2-4x+3 là 2 tại 

(2x+1)2+2=2

<=>(2x+1)2     =0

<=>2x+1       =0

<=>x             =\(\frac{-1}{2}\)

b)-x2+2x-3

=(-x2+2x-1)-2

= -(x2-2x+1)-2

=-(x-1)2-2 \(\le\)-2

Vậy GTLN của -x2+2x-3 là -2 tại :

-(x-1)2-2=-2

<=>-(x-1)2  =0

<=>x-1      =0

<=>x         =1

31 tháng 12 2016

A=\(A=\frac{1}{x^2}+\frac{1}{y^2}=\frac{x^2+y^2}{\left(xy\right)^2}=\frac{20}{\left(xy\right)^2}\) (1)

\(\left(x-y\right)^2\ge0\Rightarrow x^2+y^2\ge2xy\Rightarrow xy\le\frac{x^2+y^2}{2}=\frac{20}{2}=10\)(2)

từ (1) và (2) => \(A\ge\frac{20}{10^2}=\frac{1}{5}\)

31 tháng 12 2016

cảm ơn nhiều.

23 tháng 10 2015

Vì \(x^2\ge0\)

Mà x2\(\ne\)

=> Để \(x^2+\frac{1}{x^2}+3\)nho nhat => x2=1+ .x= -1;1

=> \(x^2+\frac{1}{x^2}+3\)=1+1/1+3=1+1+3=5

=> Min \(x^2+\frac{1}{x^2}+3=5\)

19 tháng 7 2016

\(A=x^2-6x+11=x^2-2.x.3+3^2+2\)

\(A=\left(x-3\right)^2+2\)

\(\left(x-3\right)^2\ge0\)với mọi \(x\in R\)

nên \(\left(x-3\right)^2+2\ge2\)với mọi x\(x\in R\)

Vậy \(Min_A=2\)khi đó \(x=3\)

20 tháng 3 2021

\(B=-2x^2-x+\frac{25}{8}=-\left(2x^2+x+\frac{1}{8}\right)+\frac{13}{4}=-\left(\sqrt{2}x+\frac{1}{2\sqrt{2}}\right)^2+\frac{13}{4}\le\frac{13}{4}\)

Dấu = xảy ra khi:

\(\sqrt{2}x+\frac{1}{2\sqrt{2}}=0\)

\(\Leftrightarrow x=-\frac{1}{4}\)

4 tháng 5 2018

\(B=\frac{x^2-2x+2018}{x^2}\)

\(\Rightarrow B=\frac{x^2}{x^2}-\frac{2x}{x^2}+\frac{2018}{x^2}\)

\(\Rightarrow B=1-\left(\frac{2}{x}-\frac{2018}{x^2}\right)\)

5 tháng 5 2018

         \(B=\frac{x^2-2x+2018}{x ^2}\)

\(\Rightarrow\)\(Bx^2=x^2-2x+2018\)

\(\Rightarrow\)\(\left(B-1\right)x^2+2x-2018=0\)   

Để phương trình có nghiệm thì:

      \(\Delta'=1-\left(B-1\right).\left(-2018\right)\)\(\ge0\)

  \(\Leftrightarrow\)\(2018B-2017\ge0\)

  \(\Leftrightarrow\) \(B\ge\frac{2017}{2018}\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(x=\frac{-1}{B-1}=\frac{-1}{\frac{2017}{2018}-1}=2018\)

Vậy  \(Min\)\(B=\frac{2017}{2018}\) \(\Leftrightarrow\)\(x=2018\)

p/s: tham khảo