Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(P=\left(\dfrac{-\left(x+3\right)}{x-3}+\dfrac{x-3}{x+3}+\dfrac{4x^2}{x^2-9}\right):\dfrac{2x+1-x-3}{x+3}\)
\(=\dfrac{-x^2-6x-9+x^2-6x+9+4x^2}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x-2}\)
\(=\dfrac{4x^2-12x}{x-3}\cdot\dfrac{1}{x-2}=\dfrac{4x}{x-2}\)
b: \(2x^2-5x+2=0\)
=>(x-2)(2x-1)=0
=>x=1/2
Thay x=1/2 vào P, ta được:
\(P=\left(4\cdot\dfrac{1}{2}\right):\left(\dfrac{1}{2}-2\right)=2:\dfrac{-3}{2}=\dfrac{-4}{3}\)
\(\frac{5x^2-8x+8}{2x^2}=\frac{10x^2-16x+16}{4x^2}\)
\(=\frac{4x^2-16x+16+6x^2}{4x^2}=\frac{\left(2x-4\right)^2}{4x^2}+\frac{6}{4}\)\(\ge\)1,5
Dấu = xảy ra khi 2x-4= 0 => x = 2
Mk giải hơi tắt bn cố gắng suy nghĩ nha
\(B=\frac{x^2-2x+2018}{x^2}\)
\(\Rightarrow B=\frac{x^2}{x^2}-\frac{2x}{x^2}+\frac{2018}{x^2}\)
\(\Rightarrow B=1-\left(\frac{2}{x}-\frac{2018}{x^2}\right)\)
\(B=\frac{x^2-2x+2018}{x ^2}\)
\(\Rightarrow\)\(Bx^2=x^2-2x+2018\)
\(\Rightarrow\)\(\left(B-1\right)x^2+2x-2018=0\)
Để phương trình có nghiệm thì:
\(\Delta'=1-\left(B-1\right).\left(-2018\right)\)\(\ge0\)
\(\Leftrightarrow\)\(2018B-2017\ge0\)
\(\Leftrightarrow\) \(B\ge\frac{2017}{2018}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=\frac{-1}{B-1}=\frac{-1}{\frac{2017}{2018}-1}=2018\)
Vậy \(Min\)\(B=\frac{2017}{2018}\) \(\Leftrightarrow\)\(x=2018\)
p/s: tham khảo
a) C được xác định <=> x khác +- 2
b) Ta có : \(C=\dfrac{x^3}{\left(x-2\right)\left(x+2\right)}-\dfrac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^3-x^2-2x-2x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2\left(x-1\right)-4\left(x-1\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(x-1\right)\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=x-1\)
Để C = 0 thì x - 1 = 0 <=> x = 1 (tm)
c) Để C nhận giá trị dương thì x - 1 > 0 <=> x > 1
Kết hợp với ĐK => Với x > 1 và x khác 2 thì C nhận giá trị dương