Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(|\dfrac{4}{3}x-\dfrac{3}{4}|=\left|-\dfrac{1}{3}\right|.\left|x\right|\Leftrightarrow|\dfrac{4}{3}x-\dfrac{3}{4}|=\dfrac{1}{3}.\left|x\right|\left(1\right)\)
Tìm nghiệm \(\dfrac{4}{3}x-\dfrac{3}{4}=0\Leftrightarrow\dfrac{4}{3}x=\dfrac{3}{4}\Leftrightarrow x=\dfrac{3}{4}.\dfrac{3}{4}\Leftrightarrow x=\dfrac{9}{16}\)
\(x=0\)
Lập bảng xét dấu :
\(x\) \(0\) \(\dfrac{9}{16}\)
\(\left|\dfrac{4}{3}x-\dfrac{3}{4}\right|\) \(-\) \(0\) \(-\) \(0\) \(+\)
\(\left|x\right|\) \(-\) \(0\) \(+\) \(0\) \(+\)
TH1 : \(x< 0\)
\(\left(1\right)\Leftrightarrow-\dfrac{4}{3}x+\dfrac{3}{4}=\dfrac{1}{3}.\left(-x\right)\)
\(\Leftrightarrow-\dfrac{4}{3}x+\dfrac{3}{4}=-\dfrac{1}{3}.x\)
\(\Leftrightarrow\dfrac{4}{3}x-\dfrac{1}{3}x=\dfrac{3}{4}\)
\(\Leftrightarrow x=\dfrac{3}{4}\) (loại vì không thỏa \(x< 0\))
TH2 : \(0\le x\le\dfrac{9}{16}\)
\(\left(1\right)\Leftrightarrow-\dfrac{4}{3}x+\dfrac{3}{4}=\dfrac{1}{3}x\)
\(\Leftrightarrow\dfrac{4}{3}x+\dfrac{1}{3}x=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{5}{3}x=\dfrac{3}{4}\Leftrightarrow x=\dfrac{3}{4}.\dfrac{3}{5}\Leftrightarrow x=\dfrac{9}{20}\) (thỏa điều kiện \(0\le x\le\dfrac{9}{16}\))
TH3 : \(x>\dfrac{9}{16}\)
\(\left(1\right)\Leftrightarrow\dfrac{4}{3}x-\dfrac{3}{4}=\dfrac{1}{3}x\)
\(\Leftrightarrow\dfrac{4}{3}x-\dfrac{1}{3}x=\dfrac{3}{4}\Leftrightarrow x=\dfrac{3}{4}\) (thỏa điều kiện \(x>\dfrac{9}{16}\))
Vậy \(x\in\left\{\dfrac{9}{20};\dfrac{3}{4}\right\}\)
a, ( 8x - 3 ) ( 3x + 2 ) - ( 4x + 7 ) ( x + 4 ) = ( 2x + 1 ) ( 5x - 1 )
( 24x2 + 16x - 9x - 6 ) - ( 4x2 - 16x - 7x + 28 ) = 10x2 - 2x + 5x -1
24x2 + 16x - 9x - 6 -4x2 - 16x - 7x - 10x2 + 2x - 5x = 6 + 28 - 1
10x2 -19x = 33
10x2 - 19x -33 = 0 \(\Leftrightarrow\)10x( x+ 3 ) + 11 ( x- 3 ) = 0
=> ( x- 3 ) ( 10x + 11 ) = 0\(\Rightarrow\orbr{\begin{cases}x=3\\x=\frac{-11}{10}\end{cases}}\)
b, 4( x - 1 ) ( x + 5 ) - ( x + 2 ) ( x + 5 ) = 3( x - 1 ) ( x + 2 )
4( x2 - 5x - x + 5 ) - ( x2 + 5x + 2x + 10 ) = 3( x2 + 2x - x - 2 )
4x2 - 20x - 4x + 20 - x2 - 5x - 2x - 10 = 3x2 + 6x - 3x - 6
( 4x2 - x2 ) + ( -20x - 4x - 5x - 2x ) + 20 - 10 = 3x2 + ( 6x - 3x ) - 6
3x2 - 31x - 3x2 - 3x = -6-10
-34x = -16
x = \(\frac{8}{17}\)
Bài 1 :
\(C=\frac{1}{\left|x-2\right|+3}\)
\(C\le\frac{1}{3}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy....
Bài 2 :
a) \(\left(\frac{1}{2}\right)^{3x-1}=\frac{1}{32}\)
\(\left(\frac{1}{2}\right)^{3x-1}=\left(\frac{1}{2}\right)^5\)
\(\Rightarrow3x-1=5\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)
b) \(2\cdot3^{x-405}=3^{x-1}\)
\(2=3^{x-1}:3^{x-405}\)
\(2=3^{x-1-x+405}\)
\(2=3^{404}\)( vô lí )
=> x thuộc rỗng
c) \(\frac{1}{81}\cdot27^{2x}=\left(-9\right)^4\)
\(\frac{27^{2x}}{81}=9^4\)
\(\frac{\left(3^3\right)^{2x}}{3^4}=\left(3^2\right)^4\)
\(\frac{3^{6x}}{3^4}=3^8\)
\(3^{6x-4}=3^8\)
\(\Rightarrow6x-4=8\)
\(\Rightarrow6x=12\)
\(\Rightarrow x=2\)
d) \(\left(4x-1\right)^{30}=\left(4x-1\right)^{20}\)
\(\left(4x-1\right)^{30}-\left(4x-1\right)^{20}=0\)
\(\left(4x-1\right)^{20}\cdot\left[\left(4x-1\right)^{10}-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}4x-1=0\\4x-1=\left\{\pm1\right\}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{4}\\x=\left\{\frac{1}{2};0\right\}\end{cases}}\)
2x - \(\frac{1}{3}\)= \(\frac{15}{2}\)
2x = \(\frac{15}{2}\)- \(\frac{1}{3}\)
2x = \(\frac{43}{6}\)
x = \(\frac{43}{6}\): 2
x = \(\frac{43}{3}\)
2 x - 1/3 = 1/4
2x = 1/4 + 1/3
2x = 3/12 + 4/12
2x = 7/12
x = 7/12 : 2
x = 7/12 x 2/1
x = 7/6
2x - 1/3 = 1/4
2x = 1/4 + 1/3
2x = 7/12
x = 7/12 : 2
x = 7/24