K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2018

( x - 1)2 + x( x - 4) = 0

x2 - 2x + 1 + x2 - 4x = 0

2x2 - 6x + 1 = 0

2x2 - 6x = -1

2x ( x - 3) = -1

      => 2x = -1 => -1/2

hoặc    x - 3 = -1 => x = 2

11 tháng 12 2018

\(\left(x-1\right)^2+x\left(x-4\right)=0\)

\(x^2-2x+1+x^2-4x=0\)

\(2x^2-6x+1=0\)

\(2.\left[x^2-2.x.1,5+\left(1,5\right)^2\right]-3,5=0\)

\(2.\left(x-1,5\right)^2-3,5=0\)

\(2.\left[\left(x-1,5\right)^2-1,75\right]=0\)

\(\Leftrightarrow\left(x-1,5\right)^2-1,75=0\)

\(\left(x-1,5\right)^2-\left(\sqrt{1,75}\right)^2=0\)

\(\left(x-1,5-\sqrt{1,75}\right)\left(x-1,5+\sqrt{1,75}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-1,5-\sqrt{1,75}=0\\x-1,5+\sqrt{1,75}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1,5+\sqrt{1,75}\\x=1,5-\sqrt{1,75}\end{cases}}\)

Vậy \(\orbr{\begin{cases}x=1,5+\sqrt{1,75}\\x=1,5-\sqrt{1,75}\end{cases}}\)

23 tháng 8 2021

3) \(x\left(x-4\right)+\left(x-4\right)^2=0\Leftrightarrow\left(x-4\right)\left(x+x-4\right)=0\Leftrightarrow2\left(x-4\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)

23 tháng 8 2021

4x.(x+1)-8(x+1)=0

(4x-8)(x+1)=0

suy ra x=2 hoặc x=-1

16 tháng 11 2021

a: \(x\in\left\{0;25\right\}\)

c: \(x\in\left\{0;5\right\}\)

3 tháng 12 2023

$(x^2-2)^2+4(x-1)^2-4(x^2-2)(x-1)=0$

$\Leftrightarrow(x^2-2)^2-4(x^2-2)(x-1)+4(x-1)^2=0$

$\Leftrightarrow(x^2-2)^2-2\cdot(x^2-2)\cdot2(x-1)+[2(x-1)]^2=0$

$\Leftrightarrow[(x^2-2)-2(x-1)]^2=0$

$\Leftrightarrow(x^2-2-2x+2)^2=0$

$\Leftrightarrow(x^2-2x)^2=0$

$\Leftrightarrow x^2-2x=0$

$\Leftrightarrow x(x-2)=0$

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Vậy: $x\in\{0;2\}$.

a: \(8x\left(x-2017\right)-2x+4034=0\)

\(\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\)

`@` `\text {Ans}`

`\downarrow`

`1,`

`x^2 - 9 = 0`

`<=> x^2 = 0 + 9`

`<=> x^2 = 9`

`<=> x^2 = (+-3)^2`

`<=> x = +-3`

Vậy, `S = {3; -3}`

`2,`

`25 - x^2 = 0`

`<=> x^2 = 25 - 0`

`<=> x^2 = 25`

`<=> x^2 = (+-5)^2`

`<=> x = +-5`

Vậy,` S= {5; -5}`

`3,`

`-x^2 + 36 = 0`

`<=> -x^2 = 0 - 36`

`<=> -x^2 = -36`

`<=> x^2 = 36`

`<=> x^2 = (+-6)^2`

`<=> x = +-6`

Vậy, `S= {6; -6}`

`4,`

`4x^2 - 4 = 0`

`<=> 4x^2 = 0+4`

`<=> 4x^2 = 4`

`<=> x^2 = 4 \div 4`

`<=> x^2 = 1`

`<=> x^2 = (+-1)^2`

`<=> x = +-1`

Vậy, `S= {1; -1}`

`@` `\text {Kaizuu lv uuu}`

7 tháng 7 2023

Lớp \(8\) thì nên Vậy \(S=\left\{...\right\}\) nha em ☕

28 tháng 12 2021

\(a,x+5x^2=0\\ \Rightarrow a,x\left(1+5x\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{5}\end{matrix}\right.\\ b,\left(x+3\right)^2+\left(4+x\right)\left(4-x\right)=0\\ \Rightarrow x^2+6x+9+16-x^2=0\\ \Rightarrow6x+25=0\\ \Rightarrow6x=-25\\ \Rightarrow x=-\dfrac{25}{6}\)

\(c,5x\left(x-1\right)=x-1\\ \Rightarrow c,5x\left(x-1\right)-\left(x-1\right)\\ \Rightarrow\left(x-1\right)\left(5x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\\ d,x^2-2x-3=0\\ \Rightarrow\left(x^2-3x\right)+\left(x-3\right)=0\\ \Rightarrow x\left(x-3\right)+\left(x-3\right)=0\\ \Rightarrow\left(x+1\right)\left(x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)

15 tháng 5 2017

11 tháng 9 2019

a) x = 1; x = - 1 3                 b) x = 2.

c) x = 3; x = -2.                 d) x = -3; x = 0; x = 2.

19 tháng 11 2021

a. x( x+ 3)= 0 

⇔ x= 0 hoặc x+ 3= 0

⇔ x= 0          x = -3

b. x( 2x− 1)+ 2( 2x− 1) =0 

⇔ ( 2x− 1)(x+ 2) =0

⇔ 2x− 1 =0 hoặc  x+ 2 =0

⇔ 2x       =1          x      = -2

⇔   x       =\(\dfrac{1}{2}\)         x      = -2

 

13 tháng 9 2020

a) x(x - 2) + (x - 2) = 0

=> (x + 1)(x - 2) = 0

=> \(\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)

Vậy \(x\in\left\{-1;2\right\}\)

b) \(\frac{2}{3}x\left(x^2-4\right)=0\)

=> x(x2 - 4) = 0

=> \(\orbr{\begin{cases}x=0\\x^2-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x^2=2^2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}\)

g) (x + 2)2 - x + 4 = 0

=> x2 + 4x + 4 - x + 4 = 0

=> x2 + 3x + 8 = 0

=> (x2 + 3x + 9/4) + 23/4 = 0

=> (x + 3/2)2 + 23/4 \(\ge\frac{23}{4}>0\)

=> Phương trình vô nghiệm

h) (x + 2)2 = (2x - 1)2 

=> (x + 2)2 - (2x - 1)2 = 0

=> (x + 2 - 2x + 1)(x + 2 + 2x - 1) = 0

=> (-x + 3)(3x + 1) = 0

=> \(\orbr{\begin{cases}-x+3=0\\3x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-\frac{1}{3}\end{cases}}\)

=> \(x\in\left\{3;-\frac{1}{3}\right\}\)

13 tháng 9 2020

a) x( x - 2 ) + x - 2 = 0

⇔ x( x - 2 ) + 1( x - 2 ) = 0

⇔ ( x - 2 )( x + 1 ) = 0

⇔ \(\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)

b) 2/3x( x2 - 4 ) = 0

⇔ \(\orbr{\begin{cases}\frac{2}{3}x=0\\x^2-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}\)

g) ( x + 2 )2 - x + 4 = 0

⇔ x2 + 4x + 4 - x + 4 = 0

⇔ x2 + 3x + 8 = 0 (*)

Ta có : x2 + 3x + 8 = ( x2 + 3x + 9/4 ) + 23/4 = ( x + 3/2 )2 + 23/4 ≥ 23/4 > 0 ∀ x

=> (*) không xảy ra 

=> Pt vô nghiệm

h) ( x + 2 )2 = ( 2x - 1 )2

⇔ ( x + 2 )2 - ( 2x - 1 )2 = 0

⇔ [ ( x + 2 ) - ( 2x - 1 ) ][ ( x + 2 ) + ( 2x - 1 ) ] = 0

⇔ ( x + 2 - 2x + 1 )( x + 2 + 2x - 1 ) = 0

⇔ ( 3 - x )( 3x + 1 ) = 0

⇔ \(\orbr{\begin{cases}3-x=0\\3x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-\frac{1}{3}\end{cases}}\)