\(\ge\)7
 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2019

|5x - 3| > 7

<=> 5x - 3 > 7 hoặc -(5x - 3) > 7

<=> 5x > 10 hoặc -5x > 7 - 3

<=> x > 2 hoặc -5x > 4 

=> x > 2 hoặc x > -4/5

28 tháng 1 2020

|5x-3|7

TH1: 5x-3\(\ge7\)

<->x \(\ge2\)

TH2:5x-3\(\ge-7\)

<-> x\(\ge\frac{-4}{5}\)

Ta có: \(\left|5x-3\right|\ge7\)

\(\Rightarrow\left[{}\begin{matrix}5x-3\ge7\\5x-3\le-7\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}5x\ge10\\5x\le-4\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x\ge2\\x\le-0,8\end{matrix}\right.\)

Vì x∈Z nên \(x\ge2\)

Vậy: \(x\ge2\)

24 tháng 1 2020

\( \left| {5x - 3} \right| \ge 7\\ \Leftrightarrow \left[ \begin{array}{l} \left\{ \begin{array}{l} 5x - 3 \ge 0\\ 5x - 3 \ge 7 \end{array} \right.\\ \left\{ \begin{array}{l} 5x - 3 < 0\\ - \left( {5x - 3} \right) \ge 7 \end{array} \right. \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} \left\{ \begin{array}{l} x \ge \dfrac{3}{5}\\ x \ge 2 \end{array} \right.\\ \left\{ \begin{array}{l} x < \dfrac{3}{5}\\ x \le - \dfrac{4}{5} \end{array} \right. \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x \ge 2\\ x \le - \dfrac{4}{5} \end{array} \right. \Leftrightarrow 2 \le x \le - \dfrac{4}{5} \)

24 tháng 1 2020

hình như sai dấu ạ

cái cuối tại sao 2 <= -4/5 ạ?

10 tháng 3 2017

 ta co 

x+2/327 +1+x+3/326+1+x+4/325+x+5/324+x+349/5 -4=0

x+329/327+x+329/326+x+329/325+x+329/324+x+329/5=0

(x+329)(1/327+1/326+1/325+1/324+1/5)=0

x+329=0 (vì 1/327+1/326+1/325+1/324+1/5 khác 0)

x=-329

10 tháng 3 2017

a) -325

2 tháng 1 2016

| x - 1 | + | x - 4 | = 3x 
=> x - 1 + x - 4 = 3x 
(x + x ) - ( 1 + 4 ) = 3x 
2x - 5 = 3x 
5       = 3x + 2x 
5       = 5x 

=> x = 5 : 5 
=> x = 1 hoặc -1 
Những bài kia cũng tương tự  mình nghĩ k quá khó đâu !!

 

2 tháng 1 2016

cái câu b giải tương tự

28 tháng 5 2019

a,  3x-  6x  >  0

=>    3x2  >  6x      ( Với mọi x )

=>   3xx  >  6x

=>   3x > 6   =>   x > 3

Vậy x > 3 là thỏa mãn yêu cầu

b, ( 2x - 3 ).( 2 - 5x ) \(\le\)0

=>  2x - 3  \(\le\)0      Hoặc   2 -  5x  \(\le\)0

Trường hợp 1:    2x - 3  \(\le\)0

          =>   2x \(\le\)3

          =>    x  \(\le\)\(\frac{3}{2}\)( 1 )

Trường hợp 2:          2 - 5x \(\le\)0

          =>    2 \(\le\)5x

          =>   x   \(\le\frac{2}{5}\)( 2 )

Từ ( 1 ) và ( 2 ) suy ra:

\(\le\frac{3}{2}\)Hoặc  x\(\le\frac{2}{5}\)là thỏa mãn

Mà \(\frac{2}{5}< \frac{3}{2}\)suy ra   x\(\le\)\(\frac{3}{2}\)Là thỏa mãn yêu cầu

Vậy ....

c, x2 - 4 \(\ge\)0

=>  x2 \(\ge\)4

=>  x2   \(\ge\)22

=> x \(\ge\)2

Vậy x\(\ge\)2 là thỏa mãn yêu cầu

~Haruko~

28 tháng 5 2019

a) (3x)2 - 6x > 0

=> 3x (3x - 2) > 0

*Trường hợp 1: 

  • 3x > 0 và 3x - 2 > 0

       => x > 0 và x > 2/3     (1)

*Trường hợp 2:

  • 3x < 0 và 3x - 2 < 0

       => x < 0 và x < 2/3     (2)

*** Từ (1) (2) => x > 0 hoặc x < 2/3 sẽ thỏa mãn bất phương trình trên.

28 tháng 8 2017

mấy cái này đơn dãng vô cùng nhưng có đều bn ra đề dài quá nha

a) \(3x+4\ge7\Leftrightarrow3x\ge7-4\Leftrightarrow3x\ge3\Leftrightarrow x\ge1\) vậy \(x\ge1\)

b) \(-5x+1< 11\Leftrightarrow-5x< 11-1\Leftrightarrow-5x< 10\Leftrightarrow x>\dfrac{10}{-5}\)

\(\Leftrightarrow x>-2\) vậy \(x>-2\)

c) \(\dfrac{5}{x-3}< 0\Leftrightarrow x-3< 0\Leftrightarrow x< 3\) vậy \(x< 3\)

d) \(\dfrac{-7}{2-x}\ge0\Leftrightarrow2-x\le0\Leftrightarrow x\ge2\) vậy \(x\ge2\)

e) \(x^2+4x>0\Leftrightarrow x\left(x+4\right)>0\) \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>0\\x+4>0\end{matrix}\right.\\\left[{}\begin{matrix}x< 0\\x+4< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>0\\x>-4\end{matrix}\right.\\\left[{}\begin{matrix}x< 0\\x< -4\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x>0\\x< -4\end{matrix}\right.\) vậy \(x>0\) hoặc \(x< -4\)

f) \(\dfrac{x-2}{x-6}< 0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x-2>0\\x-6>0\end{matrix}\right.\\\left[{}\begin{matrix}x-2< 0\\x-6< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>2\\x>6\end{matrix}\right.\\\left[{}\begin{matrix}x< 2\\x< 6\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>6\\x< 2\end{matrix}\right.\)

vậy \(x>6\) hoặc \(x< 2\)

g) \(\left(x-1\right)\left(x+2\right)\left(3-x\right)< 0\Leftrightarrow-\left[\left(x-1\right)\left(x+2\right)\left(x-3\right)\right]< 0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x-3\right)>0\)

th1: 3 số hạng đều dương : \(\Leftrightarrow\left[{}\begin{matrix}x-1>0\\x+2>0\\x-3>0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>1\\x>-2\\x>3\end{matrix}\right.\) \(\Rightarrow x>3\)

th2: 2 âm 1 dương : (vì trong 3 số hạng ta có : \(\left(x+2\right)\) lớn nhất \(\Rightarrow\left(x+2\right)\) dương)

\(\Leftrightarrow\left[{}\begin{matrix}x-1< 0\\x+2>0\\x-3< 0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x< 1\\x>-2\\x< 3\end{matrix}\right.\) \(\Rightarrow-2< x< 1\)

vậy \(x>3\) hoặc \(-2< x< 1\)

h) \(\dfrac{x^2-1}{x}>0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x^2-1>0\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}x^2-1< 0\\x< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x^2>1\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}x^2< 1\\x< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}-1< x< 1\\x< 0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>1\\-1< x< 0\end{matrix}\right.\) vậy \(x>1\) hoặc \(-1< x< 0\)

i) \(x^2+x-2< 0\Leftrightarrow x^2+x+\dfrac{1}{4}-\dfrac{9}{4}< 0\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2-\dfrac{9}{4}< 0\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2< \dfrac{9}{4}\Leftrightarrow\dfrac{-3}{2}< \left(x+\dfrac{1}{2}\right)< \dfrac{3}{2}\Leftrightarrow-2< x< 1\)

vậy \(-2< x< 1\)

27 tháng 8 2017

Mysterious Person, Đoàn Đức Hiếu, Nguyễn Đình Dũng , ... giúp mình!

22 tháng 12 2017

Violympic toán 7

22 tháng 12 2017

wrong

20 tháng 5 2016

a, \(-\frac{22}{15}x+\frac{1}{3}=\left|-\frac{2}{3}+\frac{1}{5}\right|=\left|-\frac{7}{15}\right|=\frac{7}{15}\)

\(\Rightarrow\frac{-22}{15}x=\frac{7}{15}-\frac{1}{3}=\frac{2}{15}\)

\(\Rightarrow x=\frac{2}{15}:\frac{-22}{15}=\frac{2}{15}.\frac{15}{-22}=-\frac{1}{11}\)

20 tháng 5 2016

b,\(x:15=8:24\)

Vậy x=5

\(\Rightarrow x:15=\frac{8}{24}\Rightarrow x=\frac{8}{24}.15=\frac{120}{24}=5\)