K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2016

\(\sqrt{x^2}=3\)

\(\Rightarrow\left|x\right|=3\)

\(\Rightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)

                                                  Vậy x = 3, x = -3

17 tháng 7 2016

\(\sqrt{x^2}=3\)

=>\(x=3\)

17 tháng 7 2016

ĐKXĐ: \(x\ge0\)

\(x+2\sqrt{x}+1=0\)

\(\Rightarrow\left(\sqrt{x}+1\right)^2=0\)

\(\Rightarrow\sqrt{x}+1=0\)

\(\Rightarrow\sqrt{x}=-1\) (vô nghiệm)

                                                            Vậy  \(x\in\phi\)

17 tháng 7 2016

\(\sqrt{x^2-2x+1}=x+1\)

\(\sqrt{\left(x-1\right)^2}=x+1\)

\(x-1=x+1\)

\(x-x=1+1\)

\(0x=2\)

x thuộc rỗng.

17 tháng 7 2016

Điều kiện nghiệm: \(x\ge-1\)

Ta có: \(\sqrt{x^2-2x+1}=x+1\)

\(\Rightarrow\sqrt{\left(x-1\right)^2}=x+1\)

\(\Rightarrow\left|x-1\right|=x+1\)

\(\Rightarrow\orbr{\begin{cases}x-1=x+1\\x-1=-x-1\end{cases}\Rightarrow\orbr{\begin{cases}0x=2\left(vn\right)\\2x=0\end{cases}\Rightarrow}x=0}\)

                                                  Vậy x = 0

17 tháng 7 2016

\(\sqrt{x^2}=\left|-4\right|\)

\(\Rightarrow\left|x\right|=4\)

\(\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)

\(\sqrt{x^2}=\left|-4\right|\)

\(\Rightarrow\left|x\right|=\left|-4\right|\)

\(\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)

14 tháng 9 2021

a) Gọi 3 số tự nhiên lẻ liên tiếp theo thứ tự tăng dần lần lượt là: a,a+2,a+4

Theo đề bài ta có: \(\left(a+2\right)\left(a+4\right)-a\left(a+2\right)=132\)

\(\Leftrightarrow a^2+6a+8-a^2-2a=132\)

\(\Leftrightarrow4a=124\Leftrightarrow a=31\)

Vậy 3 số tự nhiên liên tiếp đó lần lượt là: 31,33,35

b) \(x-3\sqrt{x}+2=0\left(đk:x\ge0\right)\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x}=2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=4\left(tm\right)\end{matrix}\right.\)

31 tháng 7 2018

hình như đề bài bị sai số thì phải bạn ạ

mình giải cứ bị lệch số ấy

2 tháng 10 2021

a) \(đk:\left\{{}\begin{matrix}x\ge0\\\sqrt{x}\ne2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)

b) \(x=3+2\sqrt{2}\Rightarrow\sqrt{x}=\sqrt{3+2\sqrt{2}}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\)

\(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}=\dfrac{2\left(\sqrt{2}+1\right)-1}{\sqrt{2}+1-2}=\dfrac{2\sqrt{2}+1}{\sqrt{2}-1}\)

c) \(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}=\dfrac{1}{2}\)

\(\Leftrightarrow4\sqrt{x}-2=\sqrt{x}-2\Leftrightarrow3\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\)

d) \(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}>2\)

\(\Leftrightarrow2\sqrt{x}-1>2\sqrt{x}-4\Leftrightarrow-1>-4\left(đúng\forall x\right)\)

e) \(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}=\dfrac{2\left(\sqrt{x}-2\right)}{\sqrt{x}-2}+\dfrac{3}{\sqrt{x}-2}=2+\dfrac{3}{\sqrt{x}-2}\in Z\)

\(\Rightarrow\sqrt{x}-2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

Do \(x\ge0\)

\(\Rightarrow x\in\left\{1;9;25\right\}\)