\(x\), biết: \(\dfrac{x^2+2015x}{2016}+x^2+\dfrac{x^2+2015x}{100...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 11 2018

\(\left(x^2+2015x\right)\left(\dfrac{1}{2016}+\dfrac{1}{1008}+\dfrac{1}{672}+1\right)=2022\)

\(\Leftrightarrow\left(x^2+2015x\right).\dfrac{2022}{2016}=2022\)

\(\Leftrightarrow x^2+2015x=2016\)

\(\Leftrightarrow x^2+2015x-2016=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2016\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-2016\end{matrix}\right.\)

a)Đặt \(A=\dfrac{1}{8}x^3-\dfrac{3}{4}x^2+\dfrac{3}{2}x-1\)

\(A=\dfrac{1}{8}\left(x^3-6x^2+12x-8\right)\)

\(A=\dfrac{1}{8}\left(x-2\right)^3\)

8 tháng 5 2018

b,\(x^4+2015x^2+2014x+2015=x^4+2015x^2+2015x-x+2015=x\left(x^3-1\right)+2015\left(X^2+x+1\right)=x\left(x-1\right)\left(x^2+x+1\right)+2015\left(x^2+x+1\right)=\left(x^2+x+1\right)\left(x^2-x+2015\right)\)

5 tháng 10 2018

Vào câu hỏi tương tự đi

6 tháng 10 2018

\(=x^4-x+2016x^2+2016x+2016.\)

\(=x\left(x^3-1\right)+2016\left(x^2+x+1\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)+2016\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2016\right)\)

21 tháng 12 2016

2015x4 + 2016x2 + x + 2016

= (2015x4 + 2015x3 + 2015x2) + (- 2015x3 - 2015x2 - 2015x) + (2016x2 + 2016x + 2016)

= (x2 + x + 1)(2015x2 - 2015x + 2016)

5 tháng 10 2018

Vào câu trả lời tương tự đi có đáp án đó

7 tháng 10 2018

Ta có: x^4 + 2016x^2 + 2015x + 2016

= x^4 + x^3 + x^2 - x^3 - x^2 - x + 2016x^2 + 2016x + 2016

= x^2(x^2 + x + 1) - x(x^2 + x + 1) + 2016(x^2 + x + 1)

= (x^2 + x + 1)(x^2 - x + 2016)

7 tháng 10 2018

       \(x^4+2016x^2+2015x+2016\)

\(=x^4-x+2016x^2+2016x+2016\)

\(=x\left(x^3-1\right)+2016\left(x^2+x+1\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)+2016\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2016\right)\)

b: \(x^4+x^2+1\)

\(=x^4+2x^2+1-x^2\)

\(=\left(x^2+1\right)^2-x^2\)

\(=\left(x^2-x+1\right)\left(x^2+x+1\right)\)

c: \(x^7+x^5+1\)

\(=x^7+x^6+x^5-x^6-x^5-x^4+x^5+x^4+x^3-x^3+1\)

\(=x^5\left(x^2+x+1\right)-x^4\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\)

8 tháng 7 2017

ĐỀ BÀI ???

30 tháng 7 2019

a, x2+5x = 6

=> x2+5x - 6 =0

=> x2+6x -x- 6 =0

=> x(x+6)-(x+6)=0

=>(x-1)(x+6)=0

=> x=1 hoặc x=-6

b, x2-2015x +2014=0

=> x2-2014x-x +2014=0

=>x(x-2014)-(x-2014)=0

=> (x-1)(x-2014)=0

=> x=1 hoặc x=2014

30 tháng 7 2019

k viết lại đề!

\(a.\\ \Leftrightarrow x^2+5x-6=0\\ \Leftrightarrow x^2+6x-x-6=0\\ \Leftrightarrow x\left(x+6\right)-\left(x+6\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-6\end{matrix}\right.\\ \Rightarrow S=\left\{1;-6\right\}\)

\(b.\\ \Leftrightarrow x^2-2014x-x+2014=0\\ \Leftrightarrow x\left(x-2014\right)-\left(x-2014\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2014\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2014=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2014\end{matrix}\right.\\ \Rightarrow S=\left\{1;2014\right\}\)

30 tháng 11 2016

2 nha bạn

29 tháng 7 2016

mk nhầm đề sửa lại là phân tích đa thức thành nhân tử

29 tháng 7 2016

x4+2014x2-2014x-x+2014

=x(x3-1)+2014(x2-x-1)

=x(x-1)(x2-x-1)+2014(x2-x-1)

=(x2-x-1)(x2-x+2014)