Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\)\(x^4-4x^3+4x^2=0\)
\(\Leftrightarrow x^2.\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow x^2.\left(x^2-2.x.2+2^2\right)=0\)
\(\Leftrightarrow x^2.\left(x-2\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\\left(x-2\right)^2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
\(b,\)\(x^2+5x+4=0\)
\(\Leftrightarrow x^2+x+4x+4=0\)
\(\Leftrightarrow x.\left(x+1\right)+4.\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right).\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+4=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-4\end{cases}}\)
\(c,\)\(9x-6x^2-3=0\)
\(\Leftrightarrow-3.\left(2x^2-3x+1\right)=0\)
\(\Leftrightarrow2x^2-3x+1=0\)
\(\Leftrightarrow2x^2-2x-x+1=0\)
\(\Leftrightarrow2x.\left(x-1\right)-\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right).\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\2x-1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=1\\2x=1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}\)
\(d,\)\(2x^2+5x+2=0\)
\(\Leftrightarrow2x^2+4x+x+2=0\)
\(\Leftrightarrow2x.\left(x+2\right)+\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right).\left(2x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\2x+1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-2\\2x=-1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{1}{2}\end{cases}}\)
a)\(x^2+7x+6\)
\(=x^2+6x+x+6\)
\(=x\left(x+6\right)+\left(x+6\right)\)
\(=\left(x+1\right)\left(x+6\right)\)
b)\(x^4+2016x^2+2015x+2016\)
\(=x^4+2016x^2+\left(2016x-x\right)+2016\)
\(=\left(x^4-x\right)+\left(2016x^2+2016x+2016\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2016\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2016\right)\)
Bài 3:
Từ \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)
\(\Rightarrow a^2+b^2+c^2+3-2a-2b-2c=0\)
\(\Rightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)
\(\Rightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\) (1)
Ta thấy:\(\begin{cases}\left(a-1\right)^2\ge0\\\left(b-1\right)^2\ge0\\\left(c-1\right)^2\ge0\end{cases}\)
\(\Rightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\) (2)
Từ (1) và (2) \(\Rightarrow\begin{cases}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\\\left(c-1\right)^2=0\end{cases}\)
\(\Rightarrow\begin{cases}a-1=0\\b-1=0\\c-1=0\end{cases}\)\(\Rightarrow\begin{cases}a=1\\b=1\\c=1\end{cases}\)
\(\Rightarrow a=b=c=1\Rightarrow H=1\cdot1\cdot1+1^{2014}+1^{2015}+1^{2016}=1+1+1+1=4\)
\(a,x^4+2x^3+x^2=\left(x^2+x\right)^2\)
\(b,x^2+5x-6=x^2-x+6x-6=x\left(x-1\right)+6\left(x-1\right)\)\(=\left(x-1\right)\left(x+6\right)\)
\(c,5x\left(x-1\right)=x-1\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\Leftrightarrow\left(5x-1\right)\left(x-1\right)=0\)\(x^4+8x=x\left(x^3+8\right)=x\left(x+2\right)\left(x^2-2x+4\right)\) \(e,x^2+x-6=x^2+3x-2x-6=x\left(x+3\right)-2\left(x+3\right)=\left(x-2\right)\left(x+3\right)\)\(f,x^2-2x-3=x^2-3x+x-3=x\left(x-3\right)+\left(x-3\right)=\left(x+1\right)\left(x-3\right)\)\(h,2x^2+5x-3=0\Leftrightarrow2x^2-6x+x-3=0\Leftrightarrow2x\left(x-3\right)+\left(x-3\right)=0\Leftrightarrow\left(2x+1\right)\left(x-3\right)=0\)
a,x2+6x-7=0
=>x2+7x-x-7=0
=>(x^2+7x)-(x+7)=0
=>x(x+7)-(x+7)=0 =>(x+7)(x-1)=0
=>\(\orbr{\begin{cases}x+7=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-7\\x=1\end{cases}}}\)
b, x^3-2x^2-5x+6=0
=>x(x^2-2x-5+6)=0
=>x(x^2-2x+1)=0\(^{\orbr{\begin{cases}x=0\\\left(x-1^2\right)=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
c, 2x^2-5x+3=0
=>2x^2-2x-3x+3=0
\(x^3-19x-30=0\)
\(\Rightarrow x^3+5x^2+6x-5x^2-25x-30=0\)
\(\Rightarrow\left(x-5\right)\left(x^2+5x+6\right)=0\)
\(\Rightarrow\left(x-5\right)\left(x^2+2x+3x+6\right)=0\)
\(\Rightarrow\left(x-5\right)[x\left(x+2\right)+3\left(x+2\right)]=0\)
\(\Rightarrow\left(x-5\right)\left(x+3\right)\left(x+2\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-5=0\\x+3=0\\x+2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=5\\x=-3\\x=-2\end{cases}}\)
1) Ta có :
\(x^2\ge0\forall x,y^2\ge0\forall y\)
\(\Rightarrow x^2+y^2\ge0\forall x,y\)
Ta lại có
\(x^2+y^2\ge2xy\)
Để 2xy đạt giá trị nhỏ nhất thì xy đạt giá trị nhỏ nhất
Nhưng cả x lẫn y nhất định phải cx dấu ko đk khác dấu
Dấu "=" xảy ra khi và chỉ khi x = y 0
Vậy GTNN của x2 + y2 là 0 khi và chỉ khi x = y = 0
Bài 2:
Ta thấy: \(\left|x+1\right|^{11}\ge0\)
\(\Rightarrow\left|x+1\right|^{11}+10\ge10\)
\(\Rightarrow A\ge10\)
Dấu "=" xảy ra khi \(x=-1\)
Vậy...
Bài 3:
\(B=x^2+9x+6=x^2+9x+\frac{81}{4}-\frac{57}{4}\)
\(=\left(x^2+9x+\frac{81}{4}\right)-\frac{57}{4}\)
\(=\left(x+\frac{9}{2}\right)^2-\frac{57}{4}\ge\frac{57}{4}\)
Dấu "=" xảy ra khi \(x=-\frac{9}{2}\)
Bài 4: phân thức trên ko xác định khi mẫu bằng 0
Tức là \(x-7=0\Rightarrow x=7\)
P/s:Mấy bài này cx ko khó lắm bn tự làm sẽ thông minh hơn
1.
a. x2 - 2x + 1 = 0
x2 - 2x*1 + 12 = 0
(x-1)2 = 0
............( tới đây tui bí rùi tự suy nghĩ rùi lm tiếp ik)
1, Tìm x biết:
a, x2 - 2x +1 = 0
(x-1)2 = 0
x-1 = 0
x = 1. Vậy ...
b, ( 5x + 1)2 - (5x - 3) ( 5x + 3) = 30
25x2 +10x + 1 - (25x2 -9) = 30
25x2 +10x + 1 - 25x2 +9 = 30
10x + 10 =30
10(x+1) = 30
x+1 =3
x = 2. vậy ...
c, ( x - 1) ( x2 + x + 1) - x ( x +2 ) ( x - 2) = 5
(x3 - 1) - x(x2 -4) = 5
x3 - 1 - x3 + 4x = 5
4x - 1 = 5
4x = 6
x = \(\dfrac{3}{2}\) .vậy ...
d, ( x - 2)3 - ( x - 3) ( x2 + 3x + 9 ) + 6 ( x + 1)2 = 15
x3 - 6x2 + 12x - 8 - (x3 - 27) + 6 (x2 + 2x +1) =15
x3 - 6x2 + 12x - 8 - x3 + 27 + 6x2 + 12x +6 =15
24x + 25 = 15
24x = -10
x = \(\dfrac{-5}{12}\) vậy ...
Bài 1:
a) \(x^2-10x=-25\)
\(\Rightarrow x^2-10+25=0\)
\(\Rightarrow x^2-2.x.5+5^2=0\)
\(\Rightarrow\left(x-5\right)^2=0\)
\(\Rightarrow x-5=0\)
\(\Rightarrow x=0+5\)
\(\Rightarrow x=5\)
Vậy \(x=5.\)
b) \(x^2-5x+6=0\)
\(\Rightarrow x^2-2x-3x+6=0\)
\(\Rightarrow x.\left(x-2\right)-3.\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right).\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0+2\\x=0+3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Vậy \(x\in\left\{2;3\right\}.\)
Chúc bạn học tốt!
a) x2−10x=−25
<=> \(x^2-10x+25=0\)
<=> \(\left(x-5\right)^2\)=0
=>\(x-5=0\)
=>\(x=5\)
b) x2−5x+6=0
<=> (x-2)(x-3)=0
=>x-2=0 hoặcx-3=0
=>x=2 hoặc x=3
c) rút gọn rồi phân tích đa thức thành nhân tử
a)5x(x-2)+3x-6=0
5x(x-2)+3(x-2)=0
(5x+3)(x-2)=0
=> 5x+3=0 hoặc x-2=0
5x=-3 x=0+2
x=-3/5 x=2
Vậy x=-3/5 hoặc x=2
b)x3-9x=0
x(x2-9)=0
=>x=0 hoặc x2-9=0
x2=9
=>x=3 hoặc x=-3
Vậy x=0 hoặc x=3 hoặc x=-3
a) 5x(x - 2) + 3x - 6 = 5x(x - 2) + 3(x - 2) = (5x + 3)(x - 2) = 0 =>\(\orbr{\begin{cases}5x+3=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-0,6\\x=2\end{cases}}}\)
b) x3 - 9x = x(x2 - 9) = x(x - 3)(x + 3) => x = 0 hoặc x - 3 = 0 hay x + 3 = 0 =>\(x\in\left\{-3;0;3\right\}\)
a, x2+5x = 6
=> x2+5x - 6 =0
=> x2+6x -x- 6 =0
=> x(x+6)-(x+6)=0
=>(x-1)(x+6)=0
=> x=1 hoặc x=-6
b, x2-2015x +2014=0
=> x2-2014x-x +2014=0
=>x(x-2014)-(x-2014)=0
=> (x-1)(x-2014)=0
=> x=1 hoặc x=2014
k viết lại đề!
\(a.\\ \Leftrightarrow x^2+5x-6=0\\ \Leftrightarrow x^2+6x-x-6=0\\ \Leftrightarrow x\left(x+6\right)-\left(x+6\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-6\end{matrix}\right.\\ \Rightarrow S=\left\{1;-6\right\}\)
\(b.\\ \Leftrightarrow x^2-2014x-x+2014=0\\ \Leftrightarrow x\left(x-2014\right)-\left(x-2014\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2014\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2014=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2014\end{matrix}\right.\\ \Rightarrow S=\left\{1;2014\right\}\)