K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2022

\(3x-3-x-1=1\Leftrightarrow2x-4=1\Leftrightarrow x=\dfrac{5}{2}\)

8 tháng 3 2022

\(3 . ( x - 1 ) - ( x + 1 ) = -1\)

\(\Rightarrow 3( x - 1 ) - x - 1 = -1\)

\(\Rightarrow ( 3x - x ) - ( 3 + 1 ) = -1\)

\(\Rightarrow 2x - 4 = -1\)

\(\Rightarrow2x = -1 + 4 \)

\(\Rightarrow 2x = 3\)

\(\Rightarrow x = \dfrac{3}{2} \)

Vậy \(x = \dfrac{3}{2} \)

 

 

10 tháng 2 2016

bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 =>  x-1/3=y-2/4=z-3/5 

áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1

do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương t

 

 

24 tháng 3 2021

Bài 1: 

a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )

AH
Akai Haruma
Giáo viên
23 tháng 8 2021

Lời giải:

a. $x=|x+1|+|x+2|+|x+3|\geq 0$

$\Rightarrow x+1>0; x+2>0; x+3>0$

$\Rightarrow |x+1|=x+1; |x+2|=x+2; |x+3|=x+3$. Do đó:

$(x+1)+(x+2)+(x+3)=x$

$3x+6=x$

$2x+6=0$

$x=-3< 0$ (vô lý)

Vậy pt vô nghiệm.

b.

$|2x+1|\geq 0$

$|x-y+1|\geq 0$

Do đó để tổng của chúng bằng $0$ thì:

$2x+1=x-y+1=0$

$\Leftrightarrow x=\frac{-1}{2}; y=\frac{1}{2}$

c.

$|x-3|=x-3$

$\Leftrightarrow x\geq 3$

c: Ta có: \(\left|x-3\right|+3=x\)

\(\Leftrightarrow\left|x-3\right|=x-3\)

\(\Leftrightarrow x-3\ge0\)

hay \(x\ge3\)

30 tháng 7 2021

a)\(\Leftrightarrow\left[{}\begin{matrix}x^3-x-1=x^3+x+1\\x^3-x-1=-x^3-x-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2\left(x+1\right)=0\\2x^3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=0\end{matrix}\right.\)

câu b) tương tự

 

b) Ta có: \(\left|x^4+x^2+1\right|=x^2+x+1\)

\(\Leftrightarrow x^4+x^2+1=x^2+x+1\)

\(\Leftrightarrow x^4-x=0\)

\(\Leftrightarrow x\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

8 tháng 5 2018

b/

Ta có \(\left(x-3\right)\left(x+\frac{1}{2}\right)>0\)

=> \(\orbr{\begin{cases}x-3>0\\x+\frac{1}{2}>0\end{cases}}\)=> \(\orbr{\begin{cases}x>3\\x>\frac{-1}{2}\end{cases}}\)

26 tháng 6 2021

Ta có : \(\dfrac{\left(x-3\right)\left(x+2\right)\left(x+1\right)}{\left(x+3\right)\left(x-4\right)}>0\)

- Đặt \(f\left(x\right)=\dfrac{\left(x-3\right)\left(x+2\right)\left(x+1\right)}{\left(x+3\right)\left(x-4\right)}\)

- Lập bảng xét dấu :

- Từ bảng xét dấu : - Để f(x) > 0

\(\Leftrightarrow\left[{}\begin{matrix}-3< x< -2\\-1< x< 3\\x>4\end{matrix}\right.\)

Vậy ...

 

30 tháng 5 2017

bạn có thể viết rõ đề ra được không?