Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Noob ơi, bạn phải đưa vào máy tính ý solve cái là ra x luôn, chỉ tội là đợi hơi lâu
a, 4.(18 - 5x) - 12(3x - 7) = 15(2x - 16) - 6(x + 14)
=> 72 - 20x - 36x + 84 = 30x - 240 - 6x - 84
=> (72 + 84) + (-20x - 36x) = (30x - 6x) + (-240 - 84)
=> 156 - 56x = 24x - 324
=> 24x + 56x = 324 + 156
=> 80x = 480
=> x = 480 : 80 = 6
Vậy x = 6
\(A\left(x\right)=2x^2+2x+3\)
3) \(A\left(x\right)=3\)
khi đó: \(2x^2+2x+3=3\)
<=> \(x^2+x=0\)
<=> \(x\left(x+1\right)=0\)
<=> \(x=0\)
hoặc \(x=-1\)
A(x) = 3x2 + x3 + 5x4 - x2 - x3 - 5x4 + 2x + 3
= 2x2 + 2x + 3
A(x) + B(x) = 2x - 7
<=> ( 2x2 + 2x + 3 ) + B(x) = 2x - 7
B(x) = 2x - 7 - ( 2x2 + 2x + 3 )
= 2x - 7 - 2x2 - 2x - 3
= -2x2 - 10
A(x) = 3 <=> 2x2 + 2x + 3 = 3
<=> x( 2x + 2 ) = 0
<=> x = 0 hoặc 2x + 2 = 0
<=> x = 0 hoặc x = -1
a) A(x) = 5x4 - 5 + 6x3 + x4 - 5x - 12(cái phần A(x) sửa lại đii )
=> A(x) = (5x4 + x4) + (-5 - 12) + 6x3 - 5x
=> A(x) = 6x4 - 17 + 6x3 - 5x
Sắp xếp : A(x) = 6x4 + 6x3 - 5x - 17
B(x) = 8x4 + 2x3 - 2x4 + 4x3 - 5x - 15 - 2x2
=> B(x) = (8x4 - 2x4) + (2x3 + 4x3) - 5x - 15 - 2x2
=> B(x) = 6x4 + 6x3 - 5x - 15 - 2x2
Sắp xếp : B(x) = 6x4 + 6x3 - 2x2 - 5x - 15
b) * Tính A(x) + B(x)
A(x) = 6x4 + 6x3 - 5x - 17
B(x) = 6x4 + 6x3 - 2x2 - 5x - 15
A(x) + B(x) = 12x4 + 12x3 - 2x2 - 10x - 32
Đến đây bạn tìm nghiệm thử coi :v
a, |2x+3| = x+2 ( 1 )
+) Với 2x+3 \(\ge\)0 <=> x \(\ge\frac{-3}{2}\) . Khi đó | 2x +3 | =2x+3 . Nên từ ( 1) ta có :
2x + 3 = x + 2
<=> 2x - x = 2-3
<=> x = -1 ( thỏa mãn điều kiện )
+) Với 2x + 3 < 0 <=> x < \(\frac{-3}{2}\). Khi đó |2x + 3| = -(2x+3) . Nên từ (1) ta có :
-(2x+3) = x+2
<=> -2x - 3 = x + 2
<=> -2x - x = 2 + 3
<=> - 3x = 5
<=> x = -5/3 ( thỏa mãn điều kiện )
Vậy.....
|5\(x\) - 4| = |\(x+2\)|
\(\left[{}\begin{matrix}5x-4=x+2\\5x-4=-x-2\end{matrix}\right.\)
\(\left[{}\begin{matrix}4x=6\\6x=2\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
vậy \(x\in\) { \(\dfrac{1}{3};\dfrac{3}{2}\)}
|2\(x\) - 3| - |3\(x\) + 2| = 0
|2\(x\) - 3| = | 3\(x\) + 2|
\(\left[{}\begin{matrix}2x-3=3x+2\\2x-3=-3x-2\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-5\\x=\dfrac{1}{5}\end{matrix}\right.\)
vậy \(x\in\){ -5; \(\dfrac{1}{5}\)}
Ta có Bất đẳng thức \(|x|+|y|\ge|x+y|\), Dấu = xảy ra khi và chỉ khi x,y cùng dấu hay \(xy\ge0\)
(Bất đẳng thức trên rõ ràng đúng về mặt logic nên dùng luôn ko cần chứng minh)
Có \(|5x+1|+|3-2x|\ge|\left(5x+1\right)+\left(3-2x\right)|=|4+3x|\)(1)
Mà đề yêu cầu tìm nghiệm khi dấu bằng xảy ra nên (1)<=>\(\left(5x+1\right)\left(3-2x\right)\ge0\Leftrightarrow\frac{-1}{5}\le x\le\frac{3}{2}\)
Tìm x biết :
| 2x - 3 | + | x - 4 | = 5x
x=7/8
nha bạn
\(\left|2x-3\right|+\left|x-4\right|=5x\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3+x-4=5x\\-2x+3-x+4=5x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-2x=7\\-8x=-7\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-7}{2}\\x=\frac{7}{8}\end{cases}}\)