Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\)\(x^4\)\(+4x^3\)\(+2x^2\)\(+x\)\(-7\)
\(B=\)\(2x^4\)\(-4x^3\)\(-2x^2\)\(-5x\)\(+3\)
b) f(x)= A(x)+B(x)= \(3x^4-4x\)\(-4\)
g(x)=A(x)-B(x) = \(-x^4+8x^3+4x^2+6x\)\(-10\)
c) g(x)= \(0^4+8.0^3+4.0^2\)\(+6.0\)\(-10\)
= -10
g(-2)=\(-2^4+8.-2^3+4.-2^2+6.-2\)\(-10\)
=\(-54\)
a) P(x) = -2x^2 + 4x^4 – 9x^3 + 3x^2 – 5x + 3
=4x^4-9x^3+x^2-5x+3
Q(x) = 5x^4 – x^3 + x^2 – 2x^3 + 3x^2 – 2 – 5x
=5x^4-3x^3+4x^2-5x-2
b)
P(x)
-bậc:4
-hệ số tự do:3
-hệ số cao nhất:4
Q(x)
-bậc :4
-hệ số tự do :-2
-hệ số cao nhất:5
a)\(A\left(x\right)=x^4+4x^3+2x^2+x-7\)
\(B\left(x\right)=2x^4-4x^3-2x^2-5x+3\)
b) \(f\left(x\right)=A\left(x\right)+B\left(x\right)=x^4+4x^3+2x^2+x-7+2x^4-4x^3-2x^2-5x+3=3x^4-4x-4\)
\(g\left(x\right)=A\left(x\right)-B\left(x\right)=x^4+4x^3+2x^2+x-7-2x^4+4x^3+2x^2+5x-3=-x^4+8x^3+4x^2+6x-10\)c)\(g\left(0\right)=-0^4+8.0^3+4.0^2+6.0-10=-10\)
\(g\left(-2\right)=\left(-2\right)^4+8.\left(-2\right)^3+4.\left(-2\right)^2+6.\left(-2\right)-10=16-64+16-12-10=-54\)
a) x5-3x2+x4-\(\dfrac{1}{2}\)x-x5+5x4+x2-1
= (x5-x5)+(x4+5x4)+(x2-3x2)-\(\dfrac{1}{2}\)x-1
= 6x4-2x2-\(\dfrac{1}{2}\)x-1
b) x-x9+x2-5x3+x6-x+3x9+2x6-x3+7
= (3x9-x9)+(2x6+x6)-(5x3+x3)+x2+(x-x)+7
= 2x9+3x6-6x3+x2+7
\(P\left(x\right)=5x^2+3x-4-2x^3+4x^2-6\)
\(P\left(x\right)=\left(5x^2+4x^2\right)+3x+\left(-4-6\right)-2x^3\)
\(P\left(x\right)=9x^2+3x-10-2x^3\)
\(Q\left(x\right)=2x^4-x+3x^2-2x^3+\frac{1}{4}-x^5\)
\(Q\left(x\right)=2x^4-x+3x^2-2x^3+\frac{1}{4}-x^5\)
Sắp giảm :
\(P\left(x\right)=-2x^3+9x^2+3x-10\)
\(Q\left(x\right)=-x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\)
\(A\left(x\right)=P\left(x\right)+Q\left(x\right)\)
\(A\left(x\right)\)= \(\left[\left(-2x^3+9x^2+3x-10\right)-\left(-x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\right)\right]\)
\(A\left(x\right)=\)\(-2x^3+9x^2+3x-10+x^5-2x^4+2x^3-3x^2+x-\frac{1}{4}\)
\(A\left(x\right)=\)\(\left(-2x^3+2x^3\right)+\left(9x^2-3x^2\right)+\left(3x-x\right)+\left(-10-\frac{1}{4}\right)+x^5-2x^4\)
\(A\left(x\right)=6x^2+2x-2,75+x^5-2x^4\)
\(A\left(x\right)=2x^2+2x+3\)
3) \(A\left(x\right)=3\)
khi đó: \(2x^2+2x+3=3\)
<=> \(x^2+x=0\)
<=> \(x\left(x+1\right)=0\)
<=> \(x=0\)
hoặc \(x=-1\)
A(x) = 3x2 + x3 + 5x4 - x2 - x3 - 5x4 + 2x + 3
= 2x2 + 2x + 3
A(x) + B(x) = 2x - 7
<=> ( 2x2 + 2x + 3 ) + B(x) = 2x - 7
B(x) = 2x - 7 - ( 2x2 + 2x + 3 )
= 2x - 7 - 2x2 - 2x - 3
= -2x2 - 10
A(x) = 3 <=> 2x2 + 2x + 3 = 3
<=> x( 2x + 2 ) = 0
<=> x = 0 hoặc 2x + 2 = 0
<=> x = 0 hoặc x = -1