Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đơn thức nào đồng dạng thì đem cộng với nhau
a) \(x^5-3x^2+x^4-\dfrac{1}{2}x-x^5+5x^4+x^2-1\)
\(=6x^4-2x^2-\dfrac{1}{2}x-1\)
b) \(x-x^9+x^2-5x^3+x^6-x+3x^9+2x^6-x^3+7\)
\(=2x^9+3x^6-6x^3+x^2+7\)
Lời giải:
Các đa thức sau khi được thu gọn và sáp xếp theo lũy giảm dần:
a) \(-x^4-4x^3+3x^2+6x-7\)
Bậc của đa thức: 4
Hệ số cao nhất : -1
Hệ số tự do : -7
b) \(-x^4-5x^3-5x^2+5\)
Bậc của đa thức: 4
Hệ số cao nhất : -1
Hệ số tự do: 5
c) \(7x^2+3x-1\)
Bậc của đa thức: 2
Hệ số cao nhất: 7
Hệ tự do: -1
d) \(3x^4+9x^3-3x^2+5x+4\)
Bậc của đa thức: 4
Hệ số cao nhất: 3
Hệ số tự do: 4
Để thu gọn và sắp xếp các hạng tử của mỗi đa thức, ta cần thực hiện các bước sau:
Đối với đa thức P(x): P(x) = (4x + 1 - x^2 + 2x^3) - (x^4 + 3x - x^3 - 2x^2 - 5) = 4x + 1 - x^2 + 2x^3 - x^4 - 3x + x^3 + 2x^2 + 5 = -x^4 + 3x^3 + x^2 + x + 6
Đối với đa thức Q(x): Q(x) = 3x^4 + 2x^5 - 3x - 5x^4 - x^5 + x + 2x^5 - 1 = 2x^5 - x^5 + 3x^4 - 5x^4 + x - 3x - 1 = x^5 - 2x^4 - 2x - 1
Sau khi thu gọn và sắp xếp các hạng tử, ta có: P(x) = -x^4 + 3x^3 + x^2 + x + 6 Q(x) = x^5 - 2x^4 - 2x - 1
a: \(P\left(x\right)=\left(4x+1-x^2+2x^3\right)-\left(x^4+3x-x^3-2x^2-5\right)\)
\(=4x+1-x^2+2x^3-x^4-3x+x^3+2x^2+5\)
\(=-x^4+3x^3+x^2+x+6\)
\(Q\left(x\right)=3x^4+2x^5-3x-5x^4-x^5+x+2x^5-1\)
\(=\left(2x^5-x^5+2x^5\right)+\left(3x^4-5x^4\right)+\left(-3x+x\right)-1\)
\(=-x^5-2x^4-2x-1\)
b: Bạn ghi lại đề đi bạn
`7,`
`a,`
\(M(x) = - 5x ^ 4 + 3x ^ 5 + x(x ^ 2 + 5) + 14x ^ 4 - 6x ^ 5 - x ^ 3 + x - 1 \)
\(M(x)=-5x^4+3x^5+x^3+5x+14x^4-6x^5-x^3+x-1\)
`M(x)=(3x^5-6x^5)+(-5x^4+14x^4)+(x^3-x^3)+(5x+x)-1`
`M(x)=-3x^5+9x^4+6x-1`
\(N(x)=x ^ 4 (x - 5) - 3x ^ 3 + 3x + 2x ^ 5 - 4x ^ 4 + 3x ^ 3 - 5 \)
\(N(x)=x^5-5x^4-3x^3+3x+2x^5-4x^4+3x^3-5\)
`N(x)=(x^5+2x^5)+(-5x^4-4x^4)+(-3x^3+3x^3)+3x-5`
`N(x)=3x^5-9x^4+3x-5`
`b,`
`H(x)=M(x)+N(x)`
\(H(x)=(-3x^5+9x^4+6x-1)+(3x^5-9x^4+3x-5) \)
`H(x)=-3x^5+9x^4+6x-1+3x^5-9x^4+3x-5`
`H(x)=(-3x^5+3x^5)+(9x^4-9x^4)+(6x+3x)+(-1-5)`
`H(x)=9x-6`
`G(x)=M(x)-N(x)`
\(G(x)=(-3x^5+9x^4+6x-1)-(3x^5-9x^4+3x-5)\)
`G(x)=-3x^5+9x^4+6x-1-3x^5+9x^4-3x+5`
`G(x)=(-3x^5-3x^5)+(9x^4+9x^4)+(6x-3x)+(-1+5)`
`G(x)=-6x^5+18x^4+3x+4`
`c,`
`H(x)=9x-6`
Hệ số cao nhất của đa thức: `9`
Hệ số tự do: `-6`
`G(x)=-6x^5+18x^4+3x+4`
Hệ số cao nhất của đa thức: `-6`
Hệ số tự do: `4`
`d,`
`H(-1)=9*(-1)-6=-9-6=-15`
`H(1)=9*1-6=9-6=3`
`G(1)=-6*1^5+18*1^4+3*1+4`
`G(1)=-6+18+3+4=12+3+4=15+4=19`
`G(0)=-6*0^5+18*0^4+3*0+4=4`
`H(-3/2)=9*(-3/2)-6=-27/2-6=-39/2`
`e,`
Đặt `H(x)=9x-6=0`
`-> 9x=0+6`
`-> 9x=6`
`-> x=6 \div 9`
`-> x=2/3`
Vậy, nghiệm của đa thức là `x=2/3.`
1:
a: f(x)=2x^4+2x^3+2x^2+5x+6
g(x)=x^4-2x^3-x^2-5x+3
c: h(x)=2x^4+2x^3+2x^2+5x+6+x^4-2x^3-x^2-5x+3=3x^4+x^2+9
K(x)=f(x)-2g(x)-4x^2
=2x^4+2x^3+2x^2+5x+6-2x^4+4x^3+2x^2+10x-6-4x^2
=6x^3+15x
c: K(x)=0
=>6x^3+15x=0
=>3x(2x^2+5)=0
=>x=0
d: H(x)=3x^4+x^2+9>=9
Dấu = xảy ra khi x=0
a) \(A\left(x\right)=x^7-2x^6+2x^3-2x^4-x^7+x^5+2x^6-x+5+2x^4-x^5\)
\(A\left(x\right)=(x^7-x^7)+(-2x^6+2x^6)+2x^3+(-2x^4+2x^4)+(x^5-x^5)-x+5\)
\(A\left(x\right)=2x^3-x+5\)
- Bậc của đa thức A(x) là 3
- Hệ số tự do: 5
- Hệ số cao nhất: 2
b) \(B\left(x\right)=-3x^5+4x^4-2x+\dfrac{1}{2}-2x^4+3x-x^5-2x^4+\dfrac{5}{2}+x\)
\(B\left(x\right)=(-3x^5-x^5)+(4x^4-2x^4-2x^4)+(-2x+x+3x)+\left(\dfrac{1}{2}+\dfrac{5}{2}\right)\)
\(B\left(x\right)=-4x^5+2x+3\)
- Bậc của đa thức B(x) là 5
- Hệ số tự do: 3
- Hệ số cao nhất: \(-4\)
c) \(C\left(y\right)=5y^2-2.\left(y+1\right)+3y.\left(y^2-2\right)+5\)
\(C\left(y\right)=5y^2-2y-2+3y\left(y^2-2\right)+5\)
\(C\left(y\right)=5y^2-2y-2+3y^3-6y+5\)
\(C\left(y\right)=5y^2-2y+3+3y^3-6y\)
\(C\left(y\right)=5y^2-8y+3+3y^3\)
\(C\left(y\right)=3y^3+5y^2-8y+3\)
- Bậc của đa thức C(y) là 3
- Hệ số tự do: 3
- Hệ số cao nhất: 3
`@` `\text {Ans}`
`\downarrow`
`a)`
`P(x) =`\(3x^2+7+2x^4-3x^2-4-5x+2x^3\)
`= (3x^2 - 3x^2) + 2x^4 + 2x^3 - 5x + (7-4)`
`= 2x^4 + 2x^3 - 5x + 3`
`Q(x) =`\(3x^3+2x^2-x^4+x+x^3+4x-2+5x^4\)
`= (5x^4 - x^4) + (3x^3 + x^3) + 2x^2 + (x + 4x)- 2`
`= 4x^4 + 4x^3 + 2x^2 + 5x - 2`
`b)`
`P(-1) = 2*(-1)^4 + 2*(-1)^3 - 5*(-1) + 3`
`= 2*1 + 2*(-1) + 5 + 3`
`= 2 - 2 + 5 + 3`
`= 8`
___
`Q(0) = 4*0^4 + 4*0^3 + 2*0^2 + 5*0 - 2`
`= 4*0 + 4*0 + 2*0 + 5*0 - 2`
`= -2`
`c)`
`G(x) = P(x) + Q(x)`
`=> G(x) = 2x^4 + 2x^3 - 5x + 3 + 4x^4 + 4x^3 + 2x^2 + 5x - 2`
`= (2x^4 + 4x^4) + (2x^3 + 4x^3) + 2x^2 + (-5x + 5x) + (3 - 2)`
`= 6x^4 + 6x^3 + 2x^2 + 1`
`d)`
`G(x) = 6x^4 + 6x^3 + 2x^2 + 1`
Vì `x^4 \ge 0 AA x`
`x^2 \ge 0 AA x`
`=> 6x^4 + 2x^2 \ge 0 AA x`
`=> 6x^4 + 6x^3 + 2x^2 + 1 \ge 0`
`=> G(x)` luôn dương `AA` `x`
Bài làm:
Ta có:
\(f\left(x\right)=x^3-3x^2+2x-5+x^2\)
\(f\left(x\right)=x^3-2x^2+2x-5\)
Và:
\(g\left(x\right)=-x^3-5x+3x^2+3x+4\)
\(g\left(x\right)=-x^3+3x^2-2x+4\)
Chúc bạn học tốt!
a) x5-3x2+x4-\(\dfrac{1}{2}\)x-x5+5x4+x2-1
= (x5-x5)+(x4+5x4)+(x2-3x2)-\(\dfrac{1}{2}\)x-1
= 6x4-2x2-\(\dfrac{1}{2}\)x-1
b) x-x9+x2-5x3+x6-x+3x9+2x6-x3+7
= (3x9-x9)+(2x6+x6)-(5x3+x3)+x2+(x-x)+7
= 2x9+3x6-6x3+x2+7