Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Tìm GTNN
a) \(B=\left|3x+5\right|\)
\(\Rightarrow B=\left|3x+5\right|\ge0\)
Vậy GTNN của \(B=\left|3x+5\right|\)\(=0\) khi x=\(\dfrac{-5}{3}\)
b) \(C=4.\left|3+2x\right|+1\)
\(\Rightarrow\)\(C=4.\left|3+2x\right|+1\)\(\ge1\)
Vậy GTNN của \(C=4.\left|3+2x\right|+1\)\(=1\) khi x=\(\dfrac{-3}{2}\)
\(B=\left|3x+5\right|\)
\(\left|3x+5\right|\ge0\)
\(B_{MIN}\)
\(\Rightarrow B_{MIN}=0\)khi \(\left|3x+5\right|=0\)
\(C=4\left|3+2x\right|+1\)
\(\left|3+2x\right|\ge0\Rightarrow4\left|3+2x\right|\ge0\)
\(C_{MIN}\Rightarrow\left|3+2x\right|=0\Rightarrow4\left|3+2x\right|=0\)
\(C_{MIN}=0+1=1\)
\(C_{MIN}=1\)khi \(4\left|3+2x\right|=0\)
Xem bài của a Tuấn :
Câu hỏi của Phạm Gia Linh - Toán lớp 6 | Học trực tuyến
100:{250:[450-(4.53-32.25)]}
=100:{250:[450-(4.125-9.25)]}
=100;{250:[450-(500-225)]}
=100:{250:[450-275]
=100:{250:175}
=100:10/7
=70
a) \(100:\left\{250:\left[450-\left(4.5^3-2^2.25\right)\right]\right\}\)
\(=100:\left\{250:\left[450-\left(4.125-4.25\right)\right]\right\}\)
\(=100:\left\{250:\left[450-\left(500-100\right)\right]\right\}\)
\(=100:\left[250:\left(450-400\right)\right]\)
\(=100:\left(250:50\right)\)
\(=100:5\)
\(=20\)
b) \(109.5^2-3^2.25\)
\(=109.25-9.25\)
\(=25\left(109-9\right)\)
\(=25.100\)
\(=2500\)
c) \(\left[5^2.6-20.\left(37-2^5\right)\right]:10-20\)
\(=\left[5^2.6-20.\left(37-32\right)\right]:10-20\)
\(=\left(5^2.6-20.5\right):10-20\)
\(=\left(25.6-20.5\right):10-20\)
\(=\left(150-100\right):10-20\)
\(=50:10-20\)
\(=5-20\)
\(=-15\)
a) Gọi số hàng dọc xếp thành nhiều nhất là a ( a \(\in\) N* )
Theo đề bài ta có
300 \(⋮\) a
276 \(⋮\) a
252 \(⋮\)a
a lớn nhất
\(\Rightarrow\) a \(\in\) ƯCLN ( 300 ; 276 ; 252 )
300 = 22 . 3 . 52
276 = 22 . 3 . 23
252 = 22 . 32 . 7
a \(\in\) ƯCLN ( 300 ; 276 ; 252 ) = 22 . 3 = 12
\(\Rightarrow\) a \(\in\) { 12 } ( thỏa mãn điều kiện )
Vậy có thể xếp thành nhiều nhất 12 hàng dọc để mỗi khối không ai lẻ hàng
b) Khi đó khối 6 có số hàng ngang là
300 : 12 = 25 ( hàng )
Khi đó khối 7 có số hàng ngang là
276 : 12 = 23 ( hàng )
Khi đó khối 8 có số hàng ngang là
252 : 12 = 21 ( hàng )
ĐS :
Gọi tử số của phân số cần tìm là a, ta có:
a + (-18) = a x 7
(-18) = a x 6
a = (-18) : 6
a = (-3)
Vậy, phân số cần tìm là \(\dfrac{-3}{11}\)
gọi phân số ban đầu là \(\dfrac{a}{11}\left(a\in Z\right)\)
Theo đề bài ta có: \(\dfrac{a}{11}=\dfrac{a+\left(-18\right)}{77}\\ \Rightarrow77a=11\left(a-18\right)\\ 77a=11a-198\\ 77a-11a=-198\\ \Rightarrow66a=-198\\ \Rightarrow a=-198:66\\ \Rightarrow a=-3\)
Vậy phân số cần tìm là \(\dfrac{-3}{11}\)
\(\dfrac{3x}{2.5}+\dfrac{3x}{5.8}+\dfrac{3x}{8.11}+\dfrac{3x}{11.14}=\dfrac{1}{21}\)
\(\Rightarrow x\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+\dfrac{3}{11.14}\right)=\dfrac{1}{21}\)
\(\Rightarrow x\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}\right)=\dfrac{1}{21}\)
\(\Rightarrow x\left(\dfrac{1}{2}-\dfrac{1}{14}\right)=\dfrac{1}{21}\)
\(\Rightarrow x.\dfrac{3}{7}=\dfrac{1}{21}\)
\(\Rightarrow x=\dfrac{1}{21}.\dfrac{7}{3}\)
\(\Rightarrow x=\dfrac{1}{9}\)
Vậy \(x=\dfrac{1}{9}\)
\(\dfrac{1}{5.8}+\dfrac{1}{8.11}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{101}{1540}\)
\(\Rightarrow\dfrac{1}{3}\left(\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{x\left(x+3\right)}\right)=\dfrac{101}{1540}\)
\(\Rightarrow\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)
\(\Rightarrow\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)
\(\Rightarrow\dfrac{x-2}{5x+15}=\dfrac{303}{1540}\)
\(\Rightarrow1540x-3080=1515x+4545\)
\(\Rightarrow25x=7625\)
\(\Rightarrow x=305\)
Vậy x = 305
Ta có:
\(\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{101}{1540}\)
\(\Leftrightarrow\dfrac{3}{5.8}+\dfrac{3}{8.11}+\dfrac{3}{11.14}+...+\dfrac{3}{x\left(x+3\right)}=3.\dfrac{101}{1540}\)
\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)
\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)
\(\Leftrightarrow\dfrac{1}{x+3}=\dfrac{1}{5}-\dfrac{303}{1540}=\dfrac{1}{308}\)
\(\Leftrightarrow x+3=308\Leftrightarrow x=305\)
Vậy \(x=305\)