K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2017

100:{250:[450-(4.53-32.25)]}

=100:{250:[450-(4.125-9.25)]}

=100;{250:[450-(500-225)]}

=100:{250:[450-275]

=100:{250:175}

=100:10/7

=70

10 tháng 11 2017

\(100:\left\{250:\left[450-\left(4.5^3-3^2.25\right)\right]\right\}\)

\(=100:\left[250:175\right]\)

\(=100:\dfrac{10}{7}\)

\(=70\)

10 tháng 11 2017

a) \(100:\left\{250:\left[450-\left(4.5^3-2^2.25\right)\right]\right\}\)

\(=100:\left\{250:\left[450-\left(4.125-4.25\right)\right]\right\}\)

\(=100:\left\{250:\left[450-\left(500-100\right)\right]\right\}\)

\(=100:\left[250:\left(450-400\right)\right]\)

\(=100:\left(250:50\right)\)

\(=100:5\)

\(=20\)

b) \(109.5^2-3^2.25\)

\(=109.25-9.25\)

\(=25\left(109-9\right)\)

\(=25.100\)

\(=2500\)

c) \(\left[5^2.6-20.\left(37-2^5\right)\right]:10-20\)

\(=\left[5^2.6-20.\left(37-32\right)\right]:10-20\)

\(=\left(5^2.6-20.5\right):10-20\)

\(=\left(25.6-20.5\right):10-20\)

\(=\left(150-100\right):10-20\)

\(=50:10-20\)

\(=5-20\)

\(=-15\)

10 tháng 11 2017

a) \(100:\left\{250:\left[450-\left(4.5^3-25.4\right)\right]\right\}\)

\(=100:\left\{250:\left[450-\left(4.125-25.4\right)\right]\right\}\)

\(=100:\left\{250:\left[450-\left(500-100\right)\right]\right\}\)

\(=100:\left[250:\left(450-400\right)\right]\)

\(=100:\left(250:50\right)\)

\(=100:5\)

\(=20\)

b) \(4\left(18-15\right)-\left(5-3\right).3^2\)

\(=4.3-2.3^2\)

\(=4.3-2.9\)

\(=12-18\)

\(=-6\)

10 tháng 11 2017

100:{250:[450-(4.53 -25.4)]}

=100:{250:[450-(4.125-25.4)]}

=100:{250:[450-(500-100)]}

=100:{250:[450-400]}

=100:{250:50}

=100:5

=20

b)4.(18-15)-(5-3).32

=4.(18-15)-(5-3).9

=4.3-2.9

=12-18

=(-6)

=4.

7 tháng 11 2017

\(\left(3n\right)^{100}\\ =3^{100}.n^{100}\\ =\left(3^4\right)^{25}.n^{100}\\ =81^{25}.n^{100}⋮81\)

Vậy \(\left(3n\right)^{100}⋮81\)

Chúc em học tốt!vui

7 tháng 11 2017

Cảm ơn cj nhìu nhìu lắm!!!hihingaingung

4 tháng 2 2017

2-->8: 4CS

10-->98: 45.2=90CS

100-->998: 450.3=1350CS

1000--> ?: ?.4=?CS

Số cuối cùng của dãy là:

{[(2016-4-90-1350):4]-1}.2+1000=1284

=>CS thứ 2016 của dãy là 4

4 tháng 2 2017

so do la 4032

leuleu

2 tháng 4 2017

Gọi \(3\) số tự nhiên liên tiếp là : \(a\)\(;\) \(a+1\)\(;\) \(a+2\) \(\left(a\in N\right)\)

Khi chia \(a\) cho \(3\) ta có các trường hợp :

\(TH1:\) \(a=3k\left(k\in N\right)\Rightarrow a⋮3\) \(\rightarrowđpcm\)

\(TH2:\) \(a=3k+1\left(k\in N\right)\Rightarrow a+2=3k+3⋮3\) \(\rightarrowđpcm\)

\(TH2:a=3k+2\left(k\in N\right)\Rightarrow a+1=3k+3⋮3\) \(\rightarrowđpcm\)

Vậy trong \(3\) số tự nhiên liên tiếp luôn có \(1\) số chia hết cho \(3\)

\(\rightarrowđpcm\)

~ Chúc bn học tốt ~

2 tháng 4 2017

Gọi 3 số tự nhiên liên tiếp lần lượt là a, a+1, a+2 (a \(\in\) N )

Xét 3 trường hợp :

+ a = 3k ( k \(\in\) N )
=> a \(⋮\) 3

+ a = 3k + 1

=> a+2 = 3k + 1 + 2

= 3k + ( 1 + 2 )

= 3k + 3

= 3(k+1) chia hết cho 3

=> (a+2) \(⋮\) 3

+ a = 3k + 2

=> a+1 = 3k + 2 + 1

= 3k + ( 2 + 1 )

= 3k + 3

= 3(k+1) chia hết cho 3

=> (a+1) \(⋮\) 3

Vậy trong ba số tự nhiên liên tiếp luôn có 1 số chia hết cho 3

11 tháng 4 2017

Giống nhau:

- Đều là các số tự nhiên

Khác nhau:

-số nguyên tố tự nhiên chỉ có hai ước là 1 và chính nó

-Hợp số là số tự nhiên có nhiều hơn hai ước

Tích của hai số nguyên tố là hợp số bởi ngoài ước là 1 ra nó còn có ước là hai số nguyên tố đó nữa.

11 tháng 4 2017

thanks

3 tháng 3 2017

Đây bạn

Viết lại bài toán cần chứng minh
13+23+33+..n3=(1+2+3+...+n)213+23+33+..n3=(1+2+3+...+n)2
Với n=1;n=2n=1;n=2 thì đẳng thức hiển nhiên đúng, hay chính là câu a,b đó :P
Giả sử đẳng thức đúng với n=kn=k
Tức 13+23+33+...k3=(1+2+3+4..+k)213+23+33+...k3=(1+2+3+4..+k)2
Ta sẽ chứng minh nó đúng với n=k+1n=k+1
Viết lại đẳng thức cần chứng minh 13+23+33+...k3+(k+1)3=(1+2+3+4..+k+k+1)213+23+33+...k3+(k+1)3=(1+2+3+4..+k+k+1)2 (*)
Mặt khác ta có công thức tính tổng sau 1+2+3+4+...+n=n(n+1)21+2+3+4+...+n=n(n+1)2
⇒(1+2+3+4+...+n)2=(n2+n)24⇒(1+2+3+4+...+n)2=(n2+n)24
Vậy viết lại đẳng thức cần chứng minh
(k2+k)24+(k+1)3=(k2+3k+2)24(k2+k)24+(k+1)3=(k2+3k+2)24
⇔(k2+3k+2)2−(k2+k)2=4(k+1)3⇔(k2+3k+2)2−(k2+k)2=4(k+1)3
Bằng biện pháp "nhân tung tóe", đẳng thức cần chứng minh tuơng đuơng
⇔4k3+12k2+12k+4=4(k+1)3⇔4k3+12k2+12k+4=4(k+1)3
⇔4(k+1)3=4(k+1)3⇔4(k+1)3=4(k+1)3 ~ Đẳng thức này đúng.
Vậy theo nguyên lý quy nạp ta có đpcm.

3 tháng 3 2017

Giải hẳn hoi nha các bạn, đừng có viết luôn dạng tổng quát, nha hihiokthanghoavuibanh

23 tháng 10 2017

Bỏ mũ 2006 nha mọi người!

10 tháng 8 2018

Tuy có vẻ hơi muộn nhưng thôi leuleu

Nếu A là số tự nhiên ⇒ \(\dfrac{1}{10}\left(7^{2004}-3^{92^{94}}\right)\in N\)

\(\Rightarrow7^{2004}-3^{92^{94}}⋮10\)

Thật vậy, ta có :

72004 với lũy thừa là 2004 ⋮ 4

⇒ 72004 = ( .......... 9 )

392^94 với lũy thừa là 9294 mà 92 ⋮ 4 ⇒ 9294 ⋮ 4

⇒ 392^94 = ( .......... 9 )

⇒ 72004 - 392^94 = ( .......... 9 ) - ( ............ 9) = ( ........... 0 ) ⋮ 10

\(\dfrac{1}{10}\left(7^{2004}-3^{92^{94}}\right)\in N\)

A=1/10.(72004-392^94) là số tự nhiên.

23 tháng 10 2017

\(\left(2^{19}.27^3+15.4^9.9^4\right):\left(6^9.2^{10}+12^{10}\right)\)

\(=\left[2^{19}.\left(3^3\right)^3+3.5.\left(2^2\right)^9.\left(3^2\right)^4\right]:\left[2^9.3^9.2^{10}+2^{10}.6^{10}\right]\)

\(=\left(2^{19}.3^9+3.5.2^{18}.3^8\right):\left(2^{19}.3^9+2^{10}.2^{10}.3^{10}\right)\)

\(=\left(2^{19}.3^9+5.3^9.2^{18}\right):\left(2^{19}.3^9+2^{20}.3^{10}\right)\)

\(=2^{18}.3^9.\left(1.2+5\right):2^{19}.3^9.\left(1+2.3\right)\)

\(=\left(2^{18}.3^9.7\right):\left(2^{18}.2.3^9.7\right)\)

\(=1:2\)

\(=0.5\)