Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b. 5x2+7,1=\(\sqrt{49}\)
\(\Rightarrow\)5x2+7,1=7
\(\Rightarrow\)5x2 = 7+7,1
\(\Rightarrow\)5x2 =14,1
\(\Rightarrow\)x2 =\(\dfrac{14,1}{5}\)
\(\Rightarrow\)x =\(\sqrt{\dfrac{14,1}{5}}\)
cho mk 1 tick đúng và câu tiếp thao sẽ hiện ra
a.\(2x^2+5x+8+\sqrt{x}=x^2+3x+35+x^2+2x-7\)
\(=2x^2+5x+8+\sqrt{x}=2x^2+5x+28\Leftrightarrow\sqrt{x}=20\Leftrightarrow x=400.\)
b.\(3\sqrt{x}+7x+5=\sqrt{x}+4x-6+3x+18\)
\(=3\sqrt{x}+7x+5=\sqrt{x}+7x+12\Leftrightarrow2\sqrt{x}=7\Leftrightarrow x=\frac{49}{4}.\)
c.\(8\sqrt{x}+2x-9=5x+7+6\sqrt{x}-3x-12.\)
\(=8\sqrt{x}+2x-9=2x+6\sqrt{x}-5\Leftrightarrow2\sqrt{x}=4\Leftrightarrow x=4.\)
d.\(2\sqrt{3x}+11x-18=5x+3+6\sqrt{3x}+6x-21\)
\(=2\sqrt{3x}+11x-18=11x+6\sqrt{3x}-19\Leftrightarrow4\sqrt{3x}=1\)
\(\Leftrightarrow\sqrt{3x}=\frac{1}{4}\Leftrightarrow3x=\frac{1}{16}\Leftrightarrow x=\frac{1}{48}.\)
a) \(2x^2+5x+8+\sqrt{x}=x^2+3x+35+x^2+2x-7\)
<=> \(2x^2+5x+8+\sqrt{x}=2x^2+5x+28\)
<=> \(2x^2+5x+8+\sqrt{x}-\left(2x^2+5\right)=28\)
<=> \(\sqrt{x}+8=28\)
<=> \(\sqrt{x}=28-8\)
<=> \(\sqrt{x}=20\)
<=> \(\left(\sqrt{x}\right)^2=20^2\)
<=> x = 400
=> x = 400
b) \(3\sqrt{x}+7x+5=\sqrt{x}+4x-6+3x+18\)
<=> \(3\sqrt{x}+7x+5=7x+\sqrt{x}+12\)
<=> \(3\sqrt{x}+5=7x+\sqrt{x}+12-7x\)
<=> \(3\sqrt{x}+5=\sqrt{x}+12\)
<=> \(3\sqrt{x}=\sqrt{x}+12-5\)
<=> \(3\sqrt{x}=\sqrt{x}+7\)
<=> \(3\sqrt{x}-\sqrt{x}=7\)
<=> \(2\sqrt{x}=7\)
<=> \(\sqrt{x}=\frac{7}{2}\)
<=> \(\left(\sqrt{x}\right)^2=\left(\frac{7}{2}\right)^2\)
<=> \(x=\frac{49}{4}\)
=> \(x=\frac{49}{4}\)
c) \(8\sqrt{x}+2x-9=5x+7+6\sqrt{x}-3x-12\)
<=> \(8\sqrt{x}+2x-9=2x+6\sqrt{x}-5\)
<=> \(8\sqrt{x}-9=2x+6\sqrt{x}-5-2x\)
<=> \(8\sqrt{x}-9=6\sqrt{x}-5\)
<=> \(8\sqrt{x}=6\sqrt{x}-5+9\)
<=> \(8\sqrt{x}=6\sqrt{x}+4\)
<=> \(8\sqrt{x}-6\sqrt{x}=4\)
<=> \(2\sqrt{x}=4\)
<=> \(\sqrt{x}=2\)
<=> \(\left(\sqrt{x}\right)^2=2^2\)
<=> x = 4
=> x = 4
d) \(2\sqrt{3x}+11x-18=5x+3+6\sqrt{3x}+6x-21\)
<=> \(2\sqrt{3x}+11x-18=11x+6\sqrt{3x}-18\)
<=> \(2\sqrt{3x}+11x-18-\left(11x-18\right)=6\sqrt{3x}\)
<=>\(2\sqrt{3x}=6\sqrt{3x}\)
<=> \(2\sqrt{3x}-6\sqrt{3x}=0\)
<=>\(-4\sqrt{3x}=0\)
<=> \(\sqrt{3x}=0\)
<=> \(\left(\sqrt{3x}\right)^2=0^2\)
<=> 3x = 0
<=> x = 0
=> x = 0
1) \(\left(-3\right)^2.\dfrac{1}{3}-\sqrt{49}+\left(-5\right)^3:\sqrt{25}\)
\(=3^2.\dfrac{1}{3}-\sqrt{49}+\left(-5\right)^3:\sqrt{25}\)
\(=9.\dfrac{1}{3}-\sqrt{49}+\left(-5\right)^3:\sqrt{25}\)
\(=3-\sqrt{49}+\left(-5\right)^3:\sqrt{25}\)
\(=3-7+\left(-5\right)^3:\sqrt{25}\)
\(=-4+\left(-5\right)^3:\sqrt{25}\)
\(=-4+\left(-5\right)^3:\sqrt{25}\)
\(=-4+\left(-5\right)^3:5^2\)
\(=-4+\left(-5\right)^{3-2}\)
\(=-4+\left(-5\right)^1\)
\(=-4-5\)
\(=-\left(4+5\right)\)
\(=-9\)
Theo đề ta có:
\(5x=8y\Rightarrow\dfrac{x}{8}=\dfrac{y}{5}\) và \(y-x=12\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{8}=\dfrac{y}{5}=\dfrac{y-x}{5-8}=\dfrac{12}{-3}=-4\)
\(\dfrac{x}{8}=-4\Rightarrow x=-4.8=-32\)
\(\dfrac{x}{5}=-4\Rightarrow y=-4.5=-20\)
Vậy \(x=-32\) ; \(y=-20\)
a) 1,(3) = 10+(3-1)/9 =12/9 = 4/3
...................
b) chẳng hiu dau bai
c) = 5 ; =7 ; = 10
\(a,\sqrt{x}-2=1\Leftrightarrow\sqrt{x}=1+2=3\Leftrightarrow x=3^2=9\)
\(b,\sqrt{x}+3-2=0\Leftrightarrow\sqrt{x}=0-3+2\Leftrightarrow\sqrt{x}=-1\left(\text{không tồn tại }x\right)\)
\(c.\sqrt{5x-1}=2\Leftrightarrow5x-1=4\Leftrightarrow5x=1+4=5\Leftrightarrow x=1\)
\(a)\) ĐKXĐ : \(x\ge0\)
\(\sqrt{x}-2=1\)
\(\Leftrightarrow\)\(\sqrt{x}=3\)
\(\Leftrightarrow\)\(x=9\)
Vậy \(x=9\)
\(b)\) ĐKXĐ : \(x\ge0\)
\(\sqrt{x}+3-2=0\)
\(\Leftrightarrow\)\(\sqrt{x}=-1\)
Vì \(\sqrt{x}\ge0\) nên ko có x thỏa mãn đề bài
Vậy ko có x thỏa mãn đề bài
\(c)\) ĐKXĐ : \(x\ge\frac{1}{5}\)
\(\sqrt{5x-1}=2\)
\(\Leftrightarrow\)\(5x-1=4\)
\(\Leftrightarrow\)\(5x=5\)
\(\Leftrightarrow\)\(x=1\) ( thỏa mãn )
Vậy \(x=1\)
Chúc bạn học tốt ~
a) 2|2/3 - x| = 1/2
|2/3 - x| = 1/4
|2/3 - x| = 1/4 hoặc |2/3 - x| = -1/4
Xét 2 TH...
\(5x^2+7,1=\text{√}49\)
\(\Rightarrow5x^2+7,1=7\)
\(\Rightarrow5x^2=7-7,1=-0,1\)
\(\Rightarrow x^2=\left(-0,1\right):5=\left(-0,02\right)\)
\(\Rightarrow x\in\varnothing\)
\(5x^2+7,1=\sqrt{49}\)
\(\Rightarrow5x^2+7,1=7\)
\(\Rightarrow5x^2=-0,1\)
\(\Rightarrow x^2=-0,1:5\Rightarrow x^2=-0,02\Rightarrow x=-\sqrt{0,02}\) hoặc \(x=\sqrt{0,02}\)
Vậy x=\(\sqrt{0,02}\)hoặc \(x=-\sqrt{0,02}\)