Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BÀi 2:
Cả 4 câu áp dụng tính chất này: \(\sqrt{a^2}=a\)
a)\(\sqrt{\frac{3^2}{7^2}}=\frac{3}{7}\)
b)\(\frac{\sqrt{3^2}+\sqrt{39^2}}{\sqrt{7^2}+\sqrt{92^2}}=\frac{3+39}{7+92}=\frac{42}{99}=\frac{14}{33}\)
c)\(\frac{\sqrt{3^2}-\sqrt{39^2}}{\sqrt{7^2}-\sqrt{91^2}}=\frac{3-39}{7-91}=\frac{-36}{-84}=\frac{3}{7}\)
d)\(\sqrt{\frac{39^2}{91^2}}=\frac{39}{91}=\frac{3}{7}\)
b)Vì BCNN(3;5) = 15
\(\Rightarrow\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{2.5}=\frac{y}{3.5}=\frac{x}{10}=\frac{y}{15};\frac{y}{5}=\frac{z}{7}\Leftrightarrow\frac{y}{5.3}=\frac{z}{7.3}=\frac{y}{15}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.10=20\\y=2.15=30\\z=2.21=42\end{matrix}\right.\)
Vậy...
c)Vì BCNN(2;3;5) = 30
\(\Rightarrow2x=3y=5z\Leftrightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}=\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
WTFFFFFF>>>
d)dễ... áp dụng tính chất DTBN là ra 1/2 rồi tính
e)Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(x=\frac{y}{2}=\frac{z}{4}=\frac{4x}{4}=\frac{3y}{6}=\frac{2x}{8}=\frac{4x-3y+2x}{4-6+8}=\frac{36}{6}=6\)
\(\Rightarrow\left\{{}\begin{matrix}x=6.1=6\\y=6.2=12\\z=6.4=24\end{matrix}\right.\)
Vậy...
a: \(\Leftrightarrow11x^3+11x^2-6x^2-6x+10x+10=0\)
\(\Leftrightarrow\left(x+1\right)\left(11x^2-6x+10\right)=0\)
=>x=-1
c: \(\Leftrightarrow x^2\left(\sqrt{5}-1\right)-x\sqrt{5}+1=0\)
\(a=\sqrt{5}-1;b=-\sqrt{5};c=1\)
Vì a+b+c=0 nên pt có hai nghiệm là:
\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{1}{\sqrt{5}-1}=\dfrac{\sqrt{5}+1}{4}\)
d: Ta có: \(x^2\left(1+\sqrt{3}\right)+x-\sqrt{3}=0\)
\(a=1+\sqrt{3};b=1;c=-\sqrt{3}\)
Vì a-b+c=0 nên phương trình có hai nghiệm là:
\(x_1=-1;x_2=\dfrac{\sqrt{3}}{\sqrt{3}+1}\)
a) \(\frac{1}{3}+\frac{5x}{3}=7\)
\(\frac{1+5x}{3}=7\)
\(1+5x=7.3\)
\(1+5x=21\)
\(5x=21-1\)
\(5x=20\)
\(x=4\)
b) \(x^2+9=17\)
\(x^2=17-9\)
\(x^2=8\)
\(x=\pm\sqrt{8}\)
b) \(\sqrt{x-2}+3=14\)
\(\sqrt{x-2}=14-3\)
\(\sqrt{x-2}=11\)
\(x-2=121\)
\(x=121+2\)
\(x=123\)
a)\(\frac{1}{3}+\frac{5x}{3}=7\)
\(\frac{1+5x}{3}=7\)
\(\frac{1+5x}{3}=\frac{21}{3}\)
\(\Rightarrow1+5x=21\)
\(5x=21-1\)
\(5x=20\)
\(x=20:5\)
\(x=4\)
vậy x=4
x2+9=17
x2=17-9
x2=8
vô lí vì 8=?2
vậy x\(\in\varnothing\)
\(c)\sqrt{x-2}+3=14\)
\(\sqrt{x-2}=14-3\)
\(\sqrt{x-2}=11\)
m biết làm đến vậy thôi
1,
Ta có; \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)
........
\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)
Cộng các vế ta được:
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}=\frac{100}{\sqrt{100}}=10\) (đpcm)
2,Câu hỏi của Nguyễn Như Quỳnh - Toán lớp 7 | Học trực tuyến
3,
3n+2-2n+2+3n-2n
= 3n.32-2n.22+3n-2n
= 3n(9 + 1) - 2n(4 + 1)
= 3n.10 - 2n.5
= 3n.10 - 2n-1.10
= 10(3n - 2n-1) chia hết cho 10
a, 4x2=15-(-21)
=36
x2=36:4
x2=4
x2=22
x=2
b. 5x2+7,1=\(\sqrt{49}\)
\(\Rightarrow\)5x2+7,1=7
\(\Rightarrow\)5x2 = 7+7,1
\(\Rightarrow\)5x2 =14,1
\(\Rightarrow\)x2 =\(\dfrac{14,1}{5}\)
\(\Rightarrow\)x =\(\sqrt{\dfrac{14,1}{5}}\)
cho mk 1 tick đúng và câu tiếp thao sẽ hiện ra