Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(x+2\right)^2+\left(x+3\right)^2-2\left(x-2\right)\left(x-3\right)=19\\ \Leftrightarrow x^2+4x+4+x^2+6x+9-2x^2+10x-12=19\\ \Leftrightarrow20x=20\\ \Leftrightarrow x=1\\ b,\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2-5\right)=15\\ \Leftrightarrow x^3+8-x^3+5x=15\\ \Leftrightarrow5x=7\\ \Leftrightarrow x=\dfrac{7}{5}\\ c,\left(x-1\right)^3+\left(2-x\right)\left(4+2x+x^2\right)+3x\left(x+2\right)=17\\ \Leftrightarrow x^3-3x^2+3x+1+8-x^3+3x^2+6x=17\\ \Leftrightarrow9x=8\\ \Leftrightarrow x=\dfrac{8}{9}\)
a. (x + 2)2 + (x + 3)2 - 2(x - 2)(x - 3) = 19
<=> (x2 + 4x + 4) + (x2 + 6x + 9) - (2x + 4)(x - 3) = 19
<=> x2 + 4x + 4 + x2 + 6x + 9 - 2x2 + 6x - 4x + 12 = 19
<=> x2 + x2 - 2x2 + 4x + 6x + 6x - 4x + 9 + 4 + 12 - 19 = 0
<=> 12x + 6 = 0
<=> 6(2x + 1) = 0
<=> 2x + 1 = 0
<=> 2x = -1
<=> x = \(\dfrac{-1}{2}\)
Rút gọn hết ta được :
a/ 41x - 17 = -21
=> 41x = -4 => x = 4/41
b/ 34x - 17 = 0
=> 34x = 17
=> x = 17/34 = 1/2
c/ 19x + 56 = 52
=> 19x = -4
=> x = -4/19
d/ 20x2 - 16x - 34 = 10x2 + 3x - 34
=> 10x2 - 19x = 0
=> x(10x - 19) = 0
=> x = 0
hoặc 10x - 19 = 0 => 10x = 19 => x = 19/10
Vậy x = 0 ; x = 19/10
Rút gọn hết ta được :
a/ 41x - 17 = -21
=> 41x = -4 => x = 4/41
b/ 34x - 17 = 0
=> 34x = 17
=> x = 17/34 = 1/2
c/ 19x + 56 = 52
=> 19x = -4
=> x = -4/19
d/ 20x 2 - 16x - 34 = 10x 2 + 3x - 34
=> 10x 2 - 19x = 0
=> x(10x - 19) = 0
=> x = 0 hoặc 10x - 19 = 0
=> 10x = 19
=> x = 19/10
Vậy x = 0 ; x = 19/10
(x-1)3+(2-x)(4+2x+x2)+3x(x+2)=17
<=>x3-3x2+3x-1+8-x3+3x2+6x=17
<=>9x+7=17
<=>9x=10
<=>x=10/9
a. x^3 -2x^2 +4x+2x^2 -4x+8 -x^3 -2x=15
8-2x=15
-2x=7
x=-7/2
a) \(x\left(x-4\right)-\left(x^2-8\right)=0\)
\(\Leftrightarrow x^2-4x-x^2+8=0\)
\(\Leftrightarrow-4\left(x-2\right)=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
b) \(\left(3x+2\right)\left(x-1\right)-3\left(x+1\right)\left(x-2\right)=4\)
\(\Leftrightarrow3x^2-3x+2x-2-3\left(x^2-2x+x-2\right)=0\)
\(\Leftrightarrow3x^2-3x+2x-2-3x^2+6x-3x+6=0\)
\(\Leftrightarrow2x=-4\)
\(\Leftrightarrow x=-2\)
c) \(x\left(x+5\right)\left(x-5\right)-\left(x+2\right)\left(x^2-2x+4\right)=17\)
\(\Leftrightarrow x\left(x^2-25\right)-\left(x^3+8\right)=17\)
\(\Leftrightarrow x^3-25x-x^3-8=17\)
\(\Leftrightarrow-25x=25\)
\(\Leftrightarrow x=-1\)
a) x(x - 4 ) - ( x^2 - 8 ) = 0
=>x2-4x-x2+8=0
=>8-4x=0
=>4x=8
=>x=2
b) ( 3x + 2 )( x - 1 ) - 3( x + 1 )( x - 2 ) = 4
=>3x2-x-2-3x2+3x+6=4
=>2x+4=4
=>2x=0
=>x=0
c) x( x + 5 )( x - 5 ) - ( x + 2 )( x^2 - 2x + 4 ) = 17
=>x(x2-25)-(x3+8)=17
=>x3-25x-x3-8=17
=>-25x-8=17
=>-25x=25
=>x=-1
1) (2x + 1)(3x – 2) = (5x – 8)(2x + 1)
⇔ (2x + 1)(3x – 2) – (5x – 8)(2x + 1) = 0
⇔ (2x + 1).[(3x – 2) – (5x – 8)] = 0
⇔ (2x + 1).(3x – 2 – 5x + 8) = 0
⇔ (2x + 1)(6 – 2x) = 0
⇔\(\left[{}\begin{matrix}2x+1=0\\6-2x=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=3\end{matrix}\right.\)
Vậy.....
2) 4x2 -1 = (2x + 1)(3x - 5)
⇔ (2x-1)(2x+1)-(2x+1)(3x-5)=0
⇔ (2x+1)(2x-1-3x+5)=0
⇔ (2x+1)(4-x)=0
⇔ \(\left[{}\begin{matrix}2x+1=0\\4-x=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=4\end{matrix}\right.\)
Vậy...
3)
(x + 1)2 = 4(x2 – 2x + 1)
⇔ (x + 1)2 - 4(x2 – 2x + 1) = 0
⇔ x2 + 2x +1- 4x2 + 8x – 4 = 0
⇔ - 3x2 + 10x – 3 = 0
⇔ (- 3x2 + 9x) + (x – 3) = 0
⇔ -3x (x – 3)+ ( x- 3) = 0
⇔ ( x- 3) ( - 3x + 1) = 0
⇔\(\left[{}\begin{matrix}x-3=0\\-3x+1=0\end{matrix}\right.\) ⇔\(\left[{}\begin{matrix}x=3\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy......
a/ (x + 3)(x - 2) + 3x = 4(x + 3/4)
=> x2 + x - 6 + 3x = 4x + 3
=> x2 = 9 => x = 3 hoặc x = -3
Vậy x = 3 , x = -3
b/ (x2 - 5)(x + 2) + 5x = 2x2 + 17
=> x3 + 2x2 - 5x - 10 + 5x - 2x2 - 17 = 0
=> x3 = 27 => x3 = 33 => x = 3
Vậy x = 3
\(\Rightarrow x^3-3x^2+3x-1+8-x^3=17-3x^2-6x\\ \Rightarrow9x=10\Rightarrow x=\dfrac{10}{9}\)