Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo bài ra ta có:
\(\dfrac{x}{3}=\dfrac{y}{2}\)
\(\Rightarrow\dfrac{x^2}{9}=\dfrac{y^2}{4}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x^2}{9}=\dfrac{y^2}{4}=\dfrac{x^2+y^2}{9+4}=\dfrac{52}{13}=4\)
\(\Rightarrow x^2=4.9=36\Rightarrow x=\pm6\\ \Rightarrow y^2=4.4=16\Rightarrow y=\pm4\)
mà x > 0; y > 0 \(\Rightarrow x=6;y=4\)
vậy x = 6; y = 4
Theo bài ra ta có:
\(\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x^2}{9}=\dfrac{y^2}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x^2}{9}=\dfrac{y^2}{4}=\dfrac{x^2+y^2}{9+4}=\dfrac{52}{13}=4\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x^2}{9}=4\Rightarrow x=36\Rightarrow x\pm6\\\dfrac{y^2}{4}=4\Rightarrow y=16\Rightarrow y=\pm4\end{matrix}\right.\)
mà \(x>0,y>0\) \(\Rightarrow x=6,y=4\)
Vậy ........
Chúc bạn học tốt!
\(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{y}{4}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{2y}{8}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1-2y}{8}\)
\(\Rightarrow x\left(1-2y\right)=40\)
\(\Rightarrow x;1-2y\in U\left(40\right)\)
\(U\left(40\right)=\left\{\pm1;\pm2;\pm4;\pm5;\pm8;\pm10;\pm20;\pm40\right\}\)
Mà 1-2y lẻ nên:
\(\left\{{}\begin{matrix}1-2y=1\Rightarrow2y=0\Rightarrow y=0\\x=40\\1-2y=-1\Rightarrow2y=2\Rightarrow y=1\\x=-40\end{matrix}\right.\)
\(\left\{{}\begin{matrix}1-2y=5\Rightarrow2y=-4\Rightarrow y=-2\\x=8\\1-2y=-5\Rightarrow2y=6\Rightarrow y=3\\x=-8\end{matrix}\right.\)
b tương tự.
c) \(\left(x+1\right)\left(x-2\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1< 0\Rightarrow x< -1\\x-2>0\Rightarrow x>2\end{matrix}\right.\\\left\{{}\begin{matrix}x+1>0\Rightarrow x>-1\\x-2< 0\Rightarrow x< 2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow-1< x< 2\Rightarrow x\in\left\{0;1\right\}\)
d tương tự
a) \(x^2y>0\) . Đúng, bởi vì theo đề ta có x < 0 hay x âm. Nhưng với số mũ y chẵn (2,4,6,...) thì khi đó xy (theo đề bài ở đây là x2) thì x2 dương hay x2 > 0 do vậy kết hợp với y > 0 ta có |\(x^2y>0\)
b) x + y = 0 . Đúng do |x| = |y| nên kết hợp với đề bài ta có:|-x|=y
Suy ra -x + y =
c) xy < 0 (hay xy âm) đúng vì x,y trái dấu. Theo quy tắc ta có trái dấu thì âm, đồng dấu thì dương.
d)tương tự như các bài trên
e) tương tự các bài trên. Mình lười làm òi!
a) x2y>0x2y>0 . Đúng, bởi vì theo đề ta có x < 0 hay x âm. Nhưng với số mũ y chẵn (2,4,6,...) thì khi đó xy (theo đề bài ở đây là x2) thì x2dương hay x2 > 0 do vậy kết hợp với y > 0 ta có |x2y>0x2y>0
b) x + y = 0 . Đúng do |x| = |y| nên kết hợp với đề bài ta có:|-x|=y
Suy ra -x + y =
c) xy < 0 (hay xy âm) đúng vì x,y trái dấu. Theo quy tắc ta có trái dấu thì âm, đồng dấu thì dương.
Ta có: (x-y)2\(\ge0\) => x2+y2-2xy \(\ge\)0
=> x2+y2 \(\ge\)2xy, điều này luôn đúng với x;y dương
Theo đề: x+y=16 => (x+y)2=16
=> x2+y2+2xy=256 \(\le2\left(x^2+y^2\right)\)
=> 128 \(\le x^2+y^2\)
\(M=\dfrac{9}{xy}+\dfrac{17}{x^2+y^2}\ge\dfrac{9}{\dfrac{x^2+y^2}{2}}+\dfrac{17}{x^2+y^2}=\dfrac{35}{x^2+y^2}\)
\(M\ge\dfrac{35}{128}\)
Dấu "=" xảy ra khi x = y = 8
soyeon_Tiểubàng giải: Cho hỏi 1 chút
Sao x + y = 16 mà (x + y )^2 vẫn = 16
Bài 1:
a, \(2y.\left(y-\dfrac{1}{7}\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}2y=0\\y-\dfrac{1}{7}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=0\\y=\dfrac{1}{7}\end{matrix}\right.\)
Vậy \(y\in\left\{0;\dfrac{1}{7}\right\}\)
b, \(\dfrac{-2}{5}+\dfrac{2}{3}y+\dfrac{1}{6}y=\dfrac{-4}{15}\)
\(\Rightarrow\dfrac{5}{6}y=\dfrac{-4}{15}+\dfrac{2}{5}\)
\(\Rightarrow\dfrac{5}{6}y=\dfrac{2}{15}\)
\(\Rightarrow y=\dfrac{4}{25}\)
Vậy \(y=\dfrac{4}{25}\)
Chúc bạn học tốt!!!
Bài 1:
a, \(2y\left(y-\dfrac{1}{7}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2y=0\\y-\dfrac{1}{7}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=0\\y=\dfrac{1}{7}\end{matrix}\right.\)
Vậy...
b, \(\dfrac{-2}{5}+\dfrac{2}{3}y+\dfrac{1}{6}y=\dfrac{-4}{15}\)
\(\Rightarrow\dfrac{5}{6}y=\dfrac{2}{15}\)
\(\Rightarrow y=\dfrac{4}{25}\)
Vậy...
Bài 2:
a, \(x\left(x-\dfrac{4}{7}\right)>0\)
\(\Rightarrow\left\{{}\begin{matrix}x>0\\x-\dfrac{4}{7}>0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x< 0\\x-\dfrac{4}{7}< 0\end{matrix}\right.\)
\(\Rightarrow x>\dfrac{4}{7}\left(x\ne0\right)\) hoặc \(x< \dfrac{4}{7}\left(x\ne0\right)\)
Vậy...
Các phần còn lại tương tự nhé
\(\left\{{}\begin{matrix}\dfrac{x}{x+y}>\dfrac{x}{x+y+z}\\\dfrac{y}{y+z}>\dfrac{y}{x+y+z}\\\dfrac{z}{x+z}>\dfrac{z}{x+y+z}\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{z+x}>\dfrac{x}{x+y+z}+\dfrac{y}{x+y+z}+\dfrac{z}{x+y+z}\)
\(\Rightarrow\dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{z+x}>1\)
\(\left\{{}\begin{matrix}\dfrac{x}{x+y}< \dfrac{x+z}{x+y+z}\\\dfrac{y}{y+z}< \dfrac{y+x}{x+y+z}\\\dfrac{z}{x+z}< \dfrac{z+y}{x+y+z}\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{z+x}< \dfrac{x+z}{x+y+z}+\dfrac{y+x}{x+y+z}+\dfrac{z+y}{x+y+z}\)
\(\Rightarrow\dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{z+x}< \dfrac{x+z+y+x+z+y}{x+y+z}\)
\(\Rightarrow\dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{z+x}< \dfrac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\Rightarrow1< \dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{z+x}< 2\)
Bài 2:
TH1: \(x\le-\frac{5}{2}\)
<=>\(-\left(x+\frac{5}{2}\right)+\frac{2}{5}-x=0\)<=>\(-x-\frac{5}{2}+\frac{2}{5}-x=0\)<=>\(-\frac{21}{10}-2x=0\)
<=>\(-2x=\frac{21}{10}\)<=>\(x=\frac{-21}{20}\)(loại)
TH2: \(-\frac{5}{2}< x\le\frac{2}{5}\)
<=>\(x+\frac{5}{2}+\frac{2}{5}-x=0\)<=>\(\frac{29}{10}=0\)(loại)
TH3: \(x>\frac{2}{5}\)
<=>\(x+\frac{5}{2}+x-\frac{2}{5}=0\)<=>\(2x+\frac{21}{10}=0\)<=>\(2x=-\frac{21}{10}\)<=>\(x=-\frac{21}{20}\)(loại)
Vậy không có số x thỏa mãn đề bài
Bài 1:
Vì \(\left(x-2\right)^2\ge0\) nên\(\left(x-2\right)^2\le0\) khi \(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Bài 3:
Đặt \(\frac{x}{15}=\frac{y}{9}=k\Rightarrow\hept{\begin{cases}x=15k\\y=9k\end{cases}}\)
Theo đề bài: xy=15 <=> 15k.9k=135k2=15 <=> k2=1/9 <=> k=-1/3 hoặc k=1/3
+) \(k=-\frac{1}{3}\Rightarrow\hept{\begin{cases}x=\left(-\frac{1}{3}\right).15=-5\\y=\left(-\frac{1}{3}\right).9=-3\end{cases}}\)
+) \(k=\frac{1}{3}\Rightarrow\hept{\begin{cases}x=\frac{1}{3}.15=5\\y=\frac{1}{3}.9=3\end{cases}}\)
Vậy ...........
\(\dfrac{x}{5}=\dfrac{y}{3}\Leftrightarrow\dfrac{x^2}{25}=\dfrac{y^2}{9}\left(x;y>0\right)\)
Áp dụng ,c dãy tỉ số bằng nhau ta có :
\(\dfrac{x^2}{25}=\dfrac{y^2}{9}=\dfrac{x^2-y^2}{25-9}=\dfrac{4}{16}=\dfrac{1}{4}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x^2}{25}=\dfrac{1}{4}\\\dfrac{y^2}{9}=\dfrac{1}{4}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{25}{4}\\y=\dfrac{9}{4}\end{matrix}\right.\)
Vậy ..
Có một phương pháp lớp 7 chứng minh khá hay mà mình mới tìm ra (do lớp 7 chưa học BĐT Svac) (@phynit)
+ Xét x = y,theo t/c dãu tỉ số bằng nhau: thì \(\dfrac{1}{x}=\dfrac{1}{y}\)\(\Rightarrow\dfrac{1}{x}=\dfrac{1}{y}=\dfrac{1+1}{x+y}=\dfrac{2}{100}=\dfrac{1}{50}\)
Khi đó:
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{50}+\dfrac{1}{50}=\dfrac{1}{25}\) (1)
+ Xét \(x\ne y\Rightarrow\dfrac{1}{x}\ne\dfrac{1}{y}\left(\ne\dfrac{1}{50}\right)\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}\ne\dfrac{1}{25}\)
Coi \(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{25}\) là độ dài 3 cạnh tam giác,theo BĐT tam giác,ta có: \(\dfrac{1}{x}+\dfrac{1}{y}>\dfrac{1}{25}\) (2)
Từ (1) và (2) suy ra \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{1}{25}\)
Dấu "=" xảy ra khi \(\dfrac{1}{x}=\dfrac{1}{y}\Leftrightarrow x=y\)