\(Cmr\) \(1< \dfrac{x}{x+y}+\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2017

\(\left\{{}\begin{matrix}\dfrac{x}{x+y}>\dfrac{x}{x+y+z}\\\dfrac{y}{y+z}>\dfrac{y}{x+y+z}\\\dfrac{z}{x+z}>\dfrac{z}{x+y+z}\end{matrix}\right.\)

\(\Rightarrow\dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{z+x}>\dfrac{x}{x+y+z}+\dfrac{y}{x+y+z}+\dfrac{z}{x+y+z}\)

\(\Rightarrow\dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{z+x}>1\)

\(\left\{{}\begin{matrix}\dfrac{x}{x+y}< \dfrac{x+z}{x+y+z}\\\dfrac{y}{y+z}< \dfrac{y+x}{x+y+z}\\\dfrac{z}{x+z}< \dfrac{z+y}{x+y+z}\end{matrix}\right.\)

\(\Rightarrow\dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{z+x}< \dfrac{x+z}{x+y+z}+\dfrac{y+x}{x+y+z}+\dfrac{z+y}{x+y+z}\)
\(\Rightarrow\dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{z+x}< \dfrac{x+z+y+x+z+y}{x+y+z}\)

\(\Rightarrow\dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{z+x}< \dfrac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow1< \dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{z+x}< 2\)

22 tháng 7 2017

\(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\)

\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{y}{4}\)

\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{2y}{8}\)

\(\Rightarrow\dfrac{5}{x}=\dfrac{1-2y}{8}\)

\(\Rightarrow x\left(1-2y\right)=40\)

\(\Rightarrow x;1-2y\in U\left(40\right)\)

\(U\left(40\right)=\left\{\pm1;\pm2;\pm4;\pm5;\pm8;\pm10;\pm20;\pm40\right\}\)

Mà 1-2y lẻ nên:

\(\left\{{}\begin{matrix}1-2y=1\Rightarrow2y=0\Rightarrow y=0\\x=40\\1-2y=-1\Rightarrow2y=2\Rightarrow y=1\\x=-40\end{matrix}\right.\)

\(\left\{{}\begin{matrix}1-2y=5\Rightarrow2y=-4\Rightarrow y=-2\\x=8\\1-2y=-5\Rightarrow2y=6\Rightarrow y=3\\x=-8\end{matrix}\right.\)

b tương tự.

c) \(\left(x+1\right)\left(x-2\right)< 0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1< 0\Rightarrow x< -1\\x-2>0\Rightarrow x>2\end{matrix}\right.\\\left\{{}\begin{matrix}x+1>0\Rightarrow x>-1\\x-2< 0\Rightarrow x< 2\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow-1< x< 2\Rightarrow x\in\left\{0;1\right\}\)

d tương tự

12 tháng 3 2017

Ta co : x<y =>\(\dfrac{a}{m}< \dfrac{b}{m}\Rightarrow a< b\)

\(x=\dfrac{a}{m}=\dfrac{2a}{2m}\)

\(y=\dfrac{b}{m}=\dfrac{2b}{2m}\)

\(z=\dfrac{2a+1}{2m}\)

do 2a < 2a+1 => \(\dfrac{2a}{2m}< \dfrac{2a+1}{2m}\)=> x<z (1)

a<b => a+1 \(\le\)b

\(\Rightarrow2a+2\le2b\)

\(\Rightarrow2a+1< 2b\)

\(\Rightarrow\dfrac{2a+1}{2m}< \dfrac{2b}{2m}\)

\(\Rightarrow z< y\) (2)

\(Tu\left(1\right)va\left(2\right)\)

\(\Rightarrow x< z< y\)

12 tháng 3 2017

Gia su x = \(\dfrac{a}{m}\), y = \(\dfrac{b}{m}\) (a,b ∈∈Z ; m>0) va x<y

Hay chung to rang z = \(\dfrac{2a+1}{2m}\) thi ta co x<z<y

Giải

x = \(\dfrac{a}{m}\), y = \(\dfrac{b}{m}\)

mà x < y => a < b

=> \(x=\dfrac{2a}{2m};y=\dfrac{2b}{2m}\)

Ta có : a < b

=> a + a < a + a + 1

=> 2a < 2a + 1

=> \(\dfrac{2a}{2m}< \dfrac{2a+1}{2m}\) hay x < z (1)

Ta có : a < b

=> a + a + 1 < b + b

=> 2a+ 1 < 2b

=> \(\dfrac{2a+1}{2m}< \dfrac{2b}{2m}\) hay z < y (2)

Từ (1) và (2) => x < y <z

24 tháng 6 2017

Ta có: \(x< y\Leftrightarrow\dfrac{a}{m}< \dfrac{b}{m}\Leftrightarrow a< b\)(1)

Từ (1), Suy ra:

\(a< b\Leftrightarrow a+a< b+a\Leftrightarrow2a< a+b\left(2\right)\)

\(a< b\Leftrightarrow a+b< b+b\Leftrightarrow a+b< 2b\left(3\right)\)

Từ (2);(3), ta có:

\(2a< a+b< 2b\Leftrightarrow\dfrac{2a}{2m}< \dfrac{a+b}{2m}< \dfrac{2b}{2m}\)

\(\Leftrightarrow x< z< y\left(đpcm\right)\)

25 tháng 6 2017

Lạc đề rồi kìa ucche

23 tháng 8 2017

Ta có: \(x< y\Rightarrow\dfrac{a}{m}< \dfrac{b}{m}\Rightarrow a< b\left(m>0\right)\)

\(z=\dfrac{a+b}{2m}>\dfrac{a+a}{2m}=\dfrac{2a}{2m}=\dfrac{a}{m}=x\)

\(z=\dfrac{a+b}{2m}< \dfrac{b+b}{2m}=\dfrac{2b}{2m}=\dfrac{b}{m}=y\)

\(\Rightarrow x< z< y\)

5 tháng 3 2017

a/m < b/m

=> a<b

Mà z = 2a +1/2m

QUy ra cùng mẫu : x = 2a/2m; 2a < 2a+1 => x < z

y = b/m = 2b/2m mà a, b thuộc Z nên ít nhất b - a = 1 => 2b-2a ít nhất bằng 2

Như vậy, 2b/2m > 2a+1/2m => b>z

Do đó x<z<y

23 tháng 9 2017

Ta có:

\(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)

\(\Rightarrow\dfrac{x}{y+z+t}+1=\dfrac{y}{z+t+x}+1=\dfrac{z}{t+x+y}+1=\dfrac{t}{x+y+z}+1\)

\(\Rightarrow\dfrac{x+y+z+t}{y+z+t}=\dfrac{x+y+z+t}{z+t+x}=\dfrac{x+y+z+t}{y+x+x}=\dfrac{x+y+z+t}{y+x+z}\)

. Xét TH1: \(x+y+z+t=0\)

\(\Rightarrow\left\{{}\begin{matrix}x+y=-\left(z+t\right)\\y+z=-\left(x+t\right)\\z+t=-\left(x+y\right)\\x+t=-\left(y+z\right)\end{matrix}\right.\)

. Xét TH2: \(x+y+z+t\ne0\)

\(\Rightarrow x=y=z=t\)

\(\Rightarrow A=1\)

\(\Rightarrow\left\{{}\begin{matrix}A=1\\A=-1\end{matrix}\right.\)

23 tháng 9 2017

P =4

leuleu