Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Gọi d=UCLN(2n+1;3n+1)
\(\Leftrightarrow3\left(2n+1\right)-2\left(3n+1\right)⋮d\)
\(\Leftrightarrow1⋮d\)
=>d=1
=>UC(2n+1;3n+1)={1;-1}
c: Gọi d=UCLN(75n+6;8n+7)
\(\Leftrightarrow8\left(5n+6\right)-5\left(8n+7\right)⋮d\)
\(\Leftrightarrow d=13\)
=>UC(5n+6;8n+7)={1;-1;13;-13}
Bài 2:
a) \(A=\frac{10n}{5n-3}=\frac{2\left(5n-3\right)+6}{5n-3}=2+\frac{6}{5n-3}\)
Vậy để A nguyên thì \(5n-3\inƯ\left(6\right)\)
Mà Ư(6)={1;-1;2;-2;3;-3;6;-6}
=>5n-3={1;-1;2;-2;3;-3;6;-6}
Ta có bảng sau:
5n-3 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
n | \(\frac{4}{5}\) | \(\frac{2}{5}\) | 1 | \(\frac{1}{5}\) | \(\frac{6}{5}\) | 0 | \(\frac{9}{5}\) | -\(\frac{3}{5}\) |
Vậy \(x=\left\{\frac{4}{5};\frac{2}{5};1;\frac{1}{5};\frac{6}{5};0;\frac{9}{5};-\frac{3}{5}\right\}\) thì A nguyên
\(a,\frac{3}{-5}=\frac{-3}{5};b,\frac{-13}{-7}=\frac{13}{7};c,\frac{-4}{8}=\frac{-1}{2};d,\frac{-34}{17}=\frac{-2}{1}\)
Đặt d=(\(\frac{n\left(n+1\right)}{2}\) ;2n+1) ; (d thuộc N*)
Khi đó:\(\hept{\begin{cases}\frac{n\left(n+1\right)}{2}\\2n+1\end{cases}}\) đều chia hết cho d=>\(\hept{\begin{cases}2n\left(n+1\right)\\2n+1\end{cases}}\) đều chia hết cho d.
=>2n(n+1)+2n+1 chia hết cho d.
=>2nn+2n+2n+1 chia hết cho d.
=>2nn+n+n+2n+1 chia hết cho d.
=>n(2n+1)+2n+1+ n chia hết cho d.
=>(n+1)(2n+1)+ n chia hết cho d. Mà 2n+1 chia hết cho d nên (n+1)(2n+1) chia hết cho d.
=>(n+1)(2n+1)+n - (n+1)(2n+1) chia hết cho d.
=>n chia hết cho d.
=>2n chia hết cho d.
=>2n+1-1 chia hết cho d . Mà 2n+1 chia hết cho d.
=>1 chia hết cho d,mà d thuộc N*.
=>d=1 hay (\(\frac{n\left(n+1\right)}{2}\) ;2n+1) =1
Vậy (\(\frac{n\left(n+1\right)}{2}\) ;2n+1) =1
Câu 1: -3
Câu 3: 991
Câu 4: -4;4
Câu 5: 2
Câu 6: 302
Câu 7: 3
Mk chắc chắn là đúng đó
câu 1:-3
câu 2:minh chiu
câu 3:991
câu 4:-4;4
câu 5:2
câu 6:302
câu 7:3
bạn cứ làm thử xem
\(7^{2n+2}+8^{2n+1}\)
\(=7n+2+8^{2n+1}\)
\(=49.7^n+8.8^{2n}\)
\(=49.7n+8\left(57+7\right)^n\)
\(=49.7^n+8.57T+8.7^n\)
\(=57.7^n+8.57T\)
\(=57.7^n\left(7^n+8T\right)\)
Vậy ƯCLN của số có dạng \(7^{n+2}+8^{2n+1}\) là 57.
Thanks thầy @phynit rất nhiều