Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3n+5 chia hết cho 2n+1
=>2(3n+5)chia hết cho 2n+1
=>6n+10 chia hết cho 2n+1
=>6n+3+7 chia hết cho 2n+1
=>3(2n+1)+7 chia hết cho 2n+1
Mà 3(2n+1) chia hết cho 2n+1
=>7 chia hết cho 2n+1
=>2n+1\(\in\){-7;-1;1;7}
=>2n\(\in\){-8;-2;0;6}
=>n\(\in\){-4;-1;0;3}
3n+5 chia hết cho 2n+1 => 2(3n+5) cũng chia hết cho 2n+1
2(3n+5)=6n+3+7=3(2n+1)+7
\(\frac{3\left(2n+1\right)+7}{2n+1}=3+\frac{7}{2n+1}.\)
Để 2(3n+5) chia hết cho 2n+1 thì 7 phải chia hết cho 2n+1
=> 2n+1={-7; -1; 1; 7) => n={-4; -1; 0; 3}
Đặt UCLN(3n +1 ; 2n + 1) = d
2n + 1 chia hết cho d => 6n + 3 chia hết cho d
3n + 1 chia hết cho d => 6n +2 chia hết cho d
=> [(6n + 3) - (6n +2)] chia hết cho d
1 chia hết cho d => d = 1
UCLN(2n + 1 ; 3n +1) = 1
Gọi \(ƯCLN\left(2n+1,3n+5\right)=d.\)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+5⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+10⋮d\end{cases}}\)
\(\Rightarrow\left(6n+10\right)-\left(6n+3\right)⋮d\Rightarrow7⋮d\Rightarrow d\in\left\{-7;-1;1;7\right\}\)
vậy \(d\in\left\{-7;-1;4;7\right\}\)
gọi d \(\in\) ƯC(2n+1;3n+5), d\(\in\)N*
=> 2n+1\(⋮\) d và 3n+5 \(⋮\)d
=>3(2n+1)\(⋮\)d và 2(3n+5)\(⋮\)d.
=>6n+3 \(⋮\)d và 6n+10 \(⋮\)d
=> (6n+10)-(6n+3)\(⋮\)d.
=>7 \(⋮\)d
=> d \(\in\)Ư(7)={1;7}
- xét: 2n+1 \(⋮\)7
=>2n+1+7\(⋮\)7 (vì 7\(⋮\)7)
=>2n+8 \(⋮\)7
=>2(n+4)\(⋮\)7
=>n+4 \(⋮\)7 ( vì (2;7)=1)
=>n+4=7k ( k\(\in\)N*)
=>n=7k-4.
khi đó: 3n+5=3.(7k-4)+5 = 21k-12+5 = 21k-7 \(⋮\) 7
vậy ƯCLN của (2n+1 và 3n+5) = 7 khi n=7k-4( k\(\in\)N*)
và ƯCLN của (2n+1 và 3n+5) = 1 khi n khác 7k-4( k\(\in\)N*)
chúc bạn năm mới vui vẻ, k nha. đúng 100% luôn.
Lời giải:
a. Gọi d là ƯCLN của $3n+1, 3n+10$
\(\Rightarrow \left\{\begin{matrix} 3n+1\vdots d\\ 3n+10\vdots d\end{matrix}\right.\Rightarrow (3n+10)-(3n+1)\vdots d\)
\(\Rightarrow 9\vdots d\)
\(\Rightarrow d=\left\{1;3;9\right\}\)
Mà $3n+1\vdots d$ nên $d$ không thể là $3,9$
$\Rightarrow d=1$
Vậy ƯCLN $(3n+1,3n+10)=1$
b.
Gọi $d$ là ƯCLN $(2n+1,n+3)$
\(\Rightarrow \left\{\begin{matrix} 2n+1\vdots d\\ n+3\vdots d\end{matrix}\right.\left\{\begin{matrix} 2n+1\vdots d\\ 2n+6\vdots d\end{matrix}\right.\)
\(\Rightarrow (2n+6)-(2n+1)\vdots d\Rightarrow 5\vdots d\)
\(\Rightarrow d\in\left\{1;5\right\}\)
hơi dài đấy 3
a,
2n+1\(⋮\)2n-3
2n-3+4\(⋮\)2n-3
\(_{\Rightarrow}\)4\(⋮\)2n-3
2n-3\(\in\)Ư(4)=(1;4;2;-1;-4;-2)
2n-3 | 1 | 2 | 4 | -1 | -2 | -4 |
2n | 4 | 5 | 7 | 2 | 1 | -1 |
n | 2 | 1 |
vậy n\(\in\)(2;1)
b;
3n+2\(⋮\)3n-4
3n-4+6\(⋮\)3n-4
=>6\(⋮\)3n-4
3n-4\(\in\)Ư(6)=(1;2;3;6;-1;-2;-3;-6)
3n-4 | 1 | 2 | 3 | 6 | -1 | -2 | -3 | -6 |
3n | 5 | 6 | 7 | 10 | 3 | 2 | 1 | -2 |
n | 3 | 5 | 1 | -1 |
vậy n\(\in\)(3;5;-1;1)
TK :
Gọi ƯCLN(2n-1; 3n+2) là d. Ta có:
2n-1 chia hết cho d => 6n-3 chia hết cho d
3n+2 chia hết cho d => 6n+4 chia hết cho d => 6n-3+7
=> 6n-3+7-(6n-3) chia hết cho d
=> 7 chia hết cho d
Giả sử phân số rút gọn được
=> 2n-1 chia hết cho 7
=> 2n-1+7 chia hết cho 7
=> 2n+6 chia hết cho 7
=> 2(n+3) chia hết cho 7
=> n+3 chia hết cho 7
=> n = 7k - 3
Vậy để phân số trên tối giản thì n ≠ 7k - 3
gọi d là UCLN (2n+1:3n+1)
ta có 2n+1 chia hết cho d suy ra 3.(2n+1) chia hết cho d suy ra 6n+3 chia hết cho d
3n+1 chia hết cho d 2.(3n+1) chia hết cho d 6n+2 chia hết cho d ta lấy 6n-6n là hết;3-2=1
suy ra d=1
UCLN(2n+1;3n+1)=1
a: Gọi d=UCLN(2n+1;6n+5)
\(\Leftrightarrow6n+5-3\left(2n+1\right)⋮d\)
\(\Leftrightarrow2⋮d\)
mà 2n+1 là số lẻ
nên n=1
=>ƯCLN(2n+1;6n+5)=1
=>ƯC(2n+1;6n+5)={1;-1}
b: Gọi d=ƯCLN(2n+1;3n+1)
\(\Leftrightarrow6n+3-6n-2⋮d\)
\(\Leftrightarrow1⋮d\)
=>d=1
=>ƯC(2n+1;3n+1)={1;-1}
c: Gọi d=UCLN(5n+3;2n+1)
\(\Leftrightarrow10n+6-10n-5⋮d\)
\(\Leftrightarrow1⋮d\)
=>ƯC(5n+3;2n+1)={1;-1}
Goi UC(2n+1;3n+1)=d
Ta co:+/2n+1 chia het cho d=>3(2n+1) chia het cho d
hay 6n+3 chia het cho d(1)
+/3n+1 chia het cho d=>2(3n+1) chia het cho d
hay 6n+2 chia het cho d(2)
Tu (1) va (2) =>(6n+3-6n-2) chia het cho d
=>1 chia het cho d
=>d la uoc cua 1
=>d thuoc tap hop 1;-1
=>tap hop uoc chung cua 2n+1 va 3n+1 la -1;1