K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2017

A B C A' B' C' a)Do A',B',C' là trung điểm BC,CA,AB=> A'B' song song với AB,B'C'song song với BC,C'A' song song với CA

\(\overrightarrow{A'B'}=\left(6;3\right)\) => VTPT của đường thẳng AB là: \(\overrightarrow{n}=\left(1;-2\right)\)

và C' thuộc (AB)=>Phương trình đường thẳng AB là:

(AB): x-2y-6=0

Tương tự ta có phương trình đường thẳng BC là:

(BC): x+4=0

Tọa độ điểm B là nghiệm hệ

\(\left\{{}\begin{matrix}\text{x-2y-6=0}\\x+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=-5\end{matrix}\right.\)

=>B(-4;-5)

A'(-4;1) là TĐ của BC => tọa độ C(-4;7)

C'(2;-2) là TĐ của AB =>tọa độ A(8;1)

b) Gọi tọa độ trọng tâm G của tam giác A'B'C' là G(x;y)

=>\(\overrightarrow{GA'}+\overrightarrow{GB'}+\overrightarrow{GC'}=0\)

=>\(\left\{{}\begin{matrix}\left(-4-x\right)+\left(2-x\right)+\left(2-x\right)=0\\\left(1-y\right)+\left(4-y\right)+\left(-2-y\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)

=>G(0;1)

Thay vào tính

Ta có:\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\) =(8-4-4;1-1+7-1-5-1)=(0;0)

=>G là trọng tâm tam giác ABC=>ĐPCM

30 tháng 5 2017

Hỏi đáp Toán

30 tháng 5 2017

17 tháng 6 2017

31 tháng 3 2016

A B C P N M

Từ giả thiết suy ra 

\(\overrightarrow{MN}=\left(-7;1\right);\overrightarrow{MP}=\left(-3;4\right)\) và tứ giá MNAP là hình bình hành nên \(\overrightarrow{OA}=\overrightarrow{ON}+\overrightarrow{OP}-\overrightarrow{OM}\)

Suy ra A(-4;3)

Do N là trung điểm CA và P là trung điểm AB nên \(\overrightarrow{OC}=2\overrightarrow{ON}-\overrightarrow{OA}\) và \(\overrightarrow{OB}=2\overrightarrow{OP}-\overrightarrow{OA}\)

Suy ra B(10;1) và C(2;5)