Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C P N M
Do M, N, P theo thứ tự là trung điểm của BC, CA và AB nên AB//MN, BC//NP và CA//PM
Từ đó đường thẳng AB đi qua P và nhận vec tơ \(\overrightarrow{MN}=\left(-7;1\right)\) làm vec tơ chỉ phương suy ra AB nhận vec tơ \(\overrightarrow{c}=\left(1;7\right)\) làm vec tơ pháp tuyến.
Vậy AB có phương trình tổng quát \(1.\left(x-3\right)+7.\left(y-2\right)=0\) hay \(x+7y-17=0\)
Tương tự, ta được BC : \(3x-4y-10=0\) và CA : \(4x+3y+7=0\)
A’ là trung điểm của cạnh BC nên -4 = (xB+ xC)
=> xB+ xC = -8 (1)
Tương tự ta có xA+ xC = 4 (2)
xB+ xC = 4 (3)
=> xA+ xB+ xC =0 (4)
Kết hợp (4) và (1) ta có: xA= 8
(4) và (2) ta có: xB= -4
(4) và (3) ta có: xC = -4
Tương tự ta tính được: yA = 1; yB = -5; yC = 7.
Vậy A(8;1), B(-4;-5), C(-4; 7).
Gọi G la trọng tâm tam giác ABC thì
xG= = 0; yG = = 1 => G(0,1).
xG’= ; yG’ = = 1 => G'(0;1)
Rõ ràng G và G’ trùng nhau.
A’ là trung điểm của BC
B’ là trung điểm của AC
C’ là trung điểm của BA
Gọi G là trọng tâm ΔABC và G’ là trọng tâm ΔA’B’C’
Ta có :
Vậy G ≡ G’ (đpcm)
A B C P N M
Từ giả thiết suy ra
\(\overrightarrow{MN}=\left(-7;1\right);\overrightarrow{MP}=\left(-3;4\right)\) và tứ giá MNAP là hình bình hành nên \(\overrightarrow{OA}=\overrightarrow{ON}+\overrightarrow{OP}-\overrightarrow{OM}\)
Suy ra A(-4;3)
Do N là trung điểm CA và P là trung điểm AB nên \(\overrightarrow{OC}=2\overrightarrow{ON}-\overrightarrow{OA}\) và \(\overrightarrow{OB}=2\overrightarrow{OP}-\overrightarrow{OA}\)
Suy ra B(10;1) và C(2;5)