Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tọa độ A là:
x=0 và y=0(2m+1)+m-2=m-2
=>OA=|m-2|
Tọa độ B là:
y=0 và (2m+1)x+m-2=0
=>x=(2-m)/(2m+1) và y=0
=>OB=|(m-2)/(2m+1)|
Để ΔOAB cân thì OA=OB
=>|m-2|=|m-2|/|2m+1|
=>|m-2|(1-1/|2m+1|)=0
=>m-2=0 hoặc 2m+1=-1 hoặc 2m+1=1
=>S={2;-1;0}
Tổng các phần tử của S là 1
a) Thay x=0 vào phương trình, ta được:
\(4\cdot0^2-2\cdot\left(2m+3\right)\cdot0+m+1=0\)
\(\Leftrightarrow m+1=0\)
hay m=-1
Áp dụng hệ thức Vi-et, ta có:
\(x_1+x_2=\dfrac{2\left(2m+3\right)}{4}\)
\(\Leftrightarrow x_1=\dfrac{2\cdot\left(-2+3\right)}{4}=\dfrac{2}{4}=\dfrac{1}{2}\)
Vậy: Khi m=-1 và nghiệm còn lại là \(x=\dfrac{1}{2}\)
a.
Phương trình hoành độ giao điểm: \(\dfrac{1}{2}x^2=x-m\Rightarrow x^2-2x+2m=0\)
\(\Delta'=1-2m>0\Leftrightarrow m< \dfrac{1}{2}\) (do (d) cắt (P) tại 2 điểm phân biệt)
Để 2 điểm nằm cùng về phía trục tung thì 2 nghiệm \(x_1,x_2\) cùng dấu.
Mà theo vi ét \(x_1+x_2=2\Rightarrow\) 2 nghiệm cùng dương.
\(\Rightarrow x_1+x_2=2m>0\Leftrightarrow m>0\)
Kết hợp điều kiện ta có \(0< m< \dfrac{1}{2}\)
b.
Từ M đến trục tung là 2 \(\Rightarrow\) \(\left|x\right|=2\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
\(M\in\left(P\right)\Rightarrow\left\{{}\begin{matrix}x_1=2\\x_2=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y_1=\dfrac{1}{2}.2^2=2\\y_2=\dfrac{1}{2}.\left(-2\right)^2=2\end{matrix}\right.\)
\(\Rightarrow M_1\in\left(2;2\right)\) và \(M_2\in\left(-2;2\right)\)
Xét n > 9 , ta có
\(S=2^9+2^{13}+2^n=2^9\left(1+2^{13}+2^{n-9}\right)\)
Vì \(\left(1+2^{13}+2^{n-9}\right)\)lẻ nên S chia hết cho 29 nhưng không chia hết cho 210 nên không là số chính phương
Xét n < 0 , ta có
\(S=2^9+2^{13}+2^n=2^n\left(1+2^{13-n}+2^{9-n}\right)\)
Vì \(\left(1+2^{13-n}+2^{9-n}\right)\) lẻ mà S là số chính phương nên 2n là số chính phương => n chẵn => \(n\in\left\{2;4;6;8\right\}\)
Khi đó , S là số chính phương , 2n là số chính phương => \(\left(1+2^{13-n}+2^{9-n}\right)\) là số chính phương
Số chính phương lẻ luôn có chữ số tận cùng là 1,9,5
Ta xét từng trường hợp nhưng nhận thấy không có trường hợp nào thõa mãn
Vậy với n = 9 thì ............