K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2018

Xét n > 9 , ta có 

\(S=2^9+2^{13}+2^n=2^9\left(1+2^{13}+2^{n-9}\right)\)

Vì \(\left(1+2^{13}+2^{n-9}\right)\)lẻ nên S chia hết cho 29 nhưng không chia hết cho 210 nên không là số chính phương

Xét n < 0 , ta có 

\(S=2^9+2^{13}+2^n=2^n\left(1+2^{13-n}+2^{9-n}\right)\)

Vì \(\left(1+2^{13-n}+2^{9-n}\right)\) lẻ mà S là số chính phương nên 2n là số chính phương => n chẵn => \(n\in\left\{2;4;6;8\right\}\)

Khi đó , S là số chính phương , 2n là số chính phương => \(\left(1+2^{13-n}+2^{9-n}\right)\) là số chính phương

Số chính phương lẻ luôn có chữ số tận cùng là 1,9,5 

Ta xét từng trường hợp nhưng nhận thấy không có trường hợp nào thõa mãn 

Vậy với n = 9 thì ............

NM
10 tháng 10 2021

ta có :

undefined

12 tháng 6 2017

Với \(n=0\Rightarrow A=0\)

Với \(n\ne0\)

Xét \(p=2\)thì ta có:

\(A=n^4+4n^3=n^2\left(n^2+4n\right)\)

Vì A là số chính phương nên 

\(\Rightarrow n^2+4n=x^2\)

\(\Leftrightarrow\left(n+2\right)^2-x^2=4\)

\(\Leftrightarrow\left(n+2+x\right)\left(n+2-x\right)=4\)

\(\Leftrightarrow\left(n+2+x,n+2-x\right)=\left(1,4;4,1;2,2;-1,-4;-4,-1;-2-2\right)\)

\(\Leftrightarrow\left(n,x\right)=\left(-4,0\right)\)

Xét \(p\ge3\) thì ta có \(p+1=2k+4\left(k\ge0\right)\)

\(A=n^4+4n^{2k+4}=n^4\left(1+4n^{2k}\right)\)

Vì A là số chính phương nên 

\(\Rightarrow1+n^{2k}=y^2\)

\(\Leftrightarrow\left(y-n^k\right)\left(y+n^k\right)=1\)

\(\Leftrightarrow\left(y-n^k;y+n^k\right)=\left(1,1;-1,-1\right)\)

Không có giá trị \(n\ne0\)thỏa mãn cái trên

Vậy ......

19 tháng 6 2017

chết lộn đề , 4n^(p-1) 

NV
16 tháng 4 2022

\(\Rightarrow\left(n+3\right)\left(n^3+2n^2+1\right)\) cũng là SCP

\(\Rightarrow4\left(n^4+5n^3+6n^2+n+3\right)\) là SCP

\(\Rightarrow4n^4+20n^3+24n^2+4n+12=k^2\)

Ta có:

\(4n^4+20n^3+24n^2+4n+12=\left(2n^2+5n-1\right)^2+3n^2+14n+11>\left(2n^2+5n-1\right)^2\)

\(4n^4+20n^3+24n^2+4n+12=\left(2n^2+5n+1\right)^2-\left(n-1\right)\left(5n+11\right)\le\left(2n^2+5n+1\right)^2\)

\(\Rightarrow\left(2n^2+5n-1\right)^2< k^2\le\left(2n^2+5n+1\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}4n^4+20n^3+24n^2+4n+12=\left(2n^2+5n\right)^2\\4n^4+20n^3+24n^2+4n+12=\left(2n^2+5n+1\right)^2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}n^2-4n-12=0\\\left(n-1\right)\left(5n+11\right)=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}n=1\\n=6\end{matrix}\right.\)

Thay lại kiểm tra thấy đều thỏa mãn

17 tháng 4 2022

Em cám ơn thầy Lâm nhiều lắm ạ!

 

31 tháng 1 2021

Xét n=0 không thỏa mãn.

Xét n≥1

Với n∈N thì:A=n4+2n3+2n2+n+7=(n2+n)2+n2+n+7>(n2+n)2

Mặt khác, xét :

A−(n2+n+2)2=−3n2−3n+3<0 với mọi n≥1

⇔A<(n2+n+2)2

Như vậy (n2+n)2<A<(n2+n+2)2, suy ra để $A$ là số chính phương thì

A=(n2+n+1)2⇔n4+2n3+2n2+n+7=(n2+n+1)2

⇔−n2−n+6=0⇔(n−2)(n+3)=0

Suy ra 

27 tháng 9 2018

\(n^4+2n^3+2n^2+n+7=k^2\)

\(\Leftrightarrow\left(n^2+n\right)^2+\left(n^2+n\right)+7=k^2\)

\(\Leftrightarrow4\left(n^2+n\right)^2+4\left(n^2+n\right)+1+27=4k^2\)

\(\Leftrightarrow\left(2n^2+2n+1\right)^2-4k^2=-27\)

\(\Leftrightarrow\left(2n^2+2n+1-2k\right)\left(2n^2+2n+1+2k\right)=-27\)

Làm nôt